JI Wenli, XI Liutao, WANG Bi. Abnormal data recognition method of coal mine monitoring system based on imbalanced data set[J]. Journal of Mine Automation, 2020, 46(1): 18-25. DOI: 10.13272/j.issn.1671-251x.17502
Citation: JI Wenli, XI Liutao, WANG Bi. Abnormal data recognition method of coal mine monitoring system based on imbalanced data set[J]. Journal of Mine Automation, 2020, 46(1): 18-25. DOI: 10.13272/j.issn.1671-251x.17502

Abnormal data recognition method of coal mine monitoring system based on imbalanced data set

More Information
  • Abnormal data recognition plays an important role in mine safety monitoring system, but abnormal data generally only accounts for about 1% of the total data of the safety monitoring system, data imbalance is an intrinsic characteristics of real-time data. At present, most of machine learning algorithms have relatively poor classification accuracy and sensitivity while dealing with classification on imbalanced data sets. In order to accurately identify abnormal data, the data collected by the distributed fiber shaft deformation monitoring system of coal mine is taken as research object, RDU-SMOTE-RF abnormal data recognition method of coal mine monitoring system based on imbalanced data set was proposed. The method uses RDU algorithm for under-sampling of majority data to remove duplicate samples,uses SMOTE algorithm for oversampling of minority abnormal data to improve the imbalance of the data set by synthesizing new abnormal data, and uses the optimized data set to train random forest (RF) classification algorithm to get abnormal data recognition model. The comparison experimental results on 6 real data sets show that the method has an average recognition accuracy rate of 99.3% for abnormal data, which has good generalization and strong robustness.
  • Related Articles

    [1]JIA Yifan, FU Xiang, WANG Ranfeng, ZHANG Zhixing, SUN Yan. Real time prediction technology for load bearing effect of hydraulic support after initial support based on data-driven approach[J]. Journal of Mine Automation, 2024, 50(7): 32-39. DOI: 10.13272/j.issn.1671-251x.2024050061
    [2]ZHANG Zenghui, MA Wenwei. Prediction of gas emission in mining face based on random forest regression algorithm[J]. Journal of Mine Automation, 2023, 49(12): 33-39. DOI: 10.13272/j.issn.1671-251x.2023020006
    [3]YUAN Yilin, ZHAO Ronghuan, HE Kun, HUANG Xiu, WANG Hongdong, ZOU Liang. Estimation of coal vitrinite reflectance based on random forest and dendritic network[J]. Journal of Mine Automation, 2023, 49(8): 148-155. DOI: 10.13272/j.issn.1671-251x.18082
    [4]ZHANG Lang, ZHANG Yinghui, ZHANG Yibin, LI Zuo. Research on fault diagnosis method of ventilation network based on machine learning[J]. Journal of Mine Automation, 2022, 48(3): 91-98. DOI: 10.13272/j.issn.1671-251x.2021120093
    [5]WU Fengliang, HUO Yuan, GAO Jianan. Coal mine gas emission prediction method based on random forest regressio[J]. Journal of Mine Automation, 2021, 47(8): 102-107. DOI: 10.13272/j.issn.1671-251x.2021010024
    [6]ZHENG Xuezhao, LI Menghan, ZHANG Yanni, JIANG Peng, WANG Baoyuan. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm[J]. Journal of Mine Automation, 2021, 47(5): 58-64. DOI: 10.13272/j.issn.1671-251x.17700
    [7]DOU Xijie, WANG Shibo, LIU Houguang, CHEN Qianyou, ZOU Wencai, LU Zhaodong . Coal and gangue identification method based on EMD feature extraction and random forest[J]. Journal of Mine Automation, 2021, 47(3): 60-65. DOI: 10.13272/j.issn.1671-251x.2020100038
    [8]GAO Yu, HU Binxin, ZHU Feng, ZHANG Hua, SONG Guangdong, GAO Guofang, PANG Jiangbo, ZHONG Guodong, QUAN Ni. Research on automatic picking of microseismic first arrival[J]. Journal of Mine Automation, 2020, 46(12): 106-110. DOI: 10.13272/j.issn.1671-251x.17564
    [9]XUE Guanghui, LI Xiuying, QIAN Xiaoling, ZHANG Yunfei. Coal-gangue image recognition in fully-mechanized caving face based on random forest[J]. Journal of Mine Automation, 2020, 46(5): 57-62. DOI: 10.13272/j.issn.1671-251x.2019110064
    [10]LI Tengfei, LI Changyou, LI Jingzhao. Coal mine information comprehensive perception and intelligent decision system[J]. Journal of Mine Automation, 2020, 46(3): 34-37. DOI: 10.13272/j.issn.1671-251x.17541
  • Cited by

    Periodical cited type(6)

    1. 陈书航,王世博,葛世荣,王赟,马广军. 综采工作面刮板输送机煤流时空分布研究. 工矿自动化. 2024(09): 98-107 . 本站查看
    2. 王桂忠,叶隆浩. 基于煤流量识别的带式输送机节能控制系统设计与研究. 煤矿机械. 2023(01): 14-17 .
    3. 周爱民,叶飞,施旭东,赵培成. 基于超声波传感器的带式输送机烟丝瞬时流量监测系统的设计. 现代信息科技. 2022(03): 149-152 .
    4. 唐文杰. 带式输送机运行状态智能监控体系的研究. 机械管理开发. 2022(09): 300-301+304 .
    5. 毛清华,毛金根,马宏伟,张旭辉,李铮. 矿用带式输送机智能监测系统研究. 工矿自动化. 2020(06): 48-52+58 . 本站查看
    6. 李瑶,王义涵. 带式输送机煤流量自适应检测方法. 工矿自动化. 2020(06): 98-102 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (85) PDF downloads (23) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return