Citation: | HAO Bonan. Coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion[J]. Journal of Mine Automation,2023,49(11):100-106. DOI: 10.13272/j.issn.1671-251x.2023080105 |
[1] |
程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.
CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
|
[2] |
孔二伟,张亚邦,李佳悦,等. 面向煤矿井下低光照图像的增强方法[J]. 工矿自动化,2023,49(4):62-69,85.
KONG Erwei,ZHANG Yabang,LI Jiayue,et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69,85.
|
[3] |
龚云,颉昕宇. 基于同态滤波方法的煤矿井下图像增强技术研究[J]. 煤炭科学技术,2023,51(3):241-250.
GONG Yun,XIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. Coal Science and Technology,2023,51(3):241-250.
|
[4] |
JIANG He,CAI Huangkai,YANG Jie. Learning in-place residual homogeneity for image detail enhancement[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Calgary,2018:1428-1432.
|
[5] |
智宁,毛善君,李梅. 基于双伽马函数的煤矿井下低亮度图像增强算法[J]. 辽宁工程技术大学学报(自然科学版),2018,37(1):191-197.
ZHI Ning,MAO Shanjun,LI Mei. An enhancement algorithm for coal mine low illumination images based on bi-gamma function[J]. Journal of Liaoning Technical University(Natural Science),2018,37(1):191-197.
|
[6] |
冯玮,姚顽强,蔺小虎,等. 顾及图像增强的煤矿井下视觉同时定位与建图算法[J]. 工矿自动化,2023,49(5):74-81.
FENG Wei,YAO Wanqiang,LIN Xiaohu,et al. Visual simultaneous localization and mapping algorithm of coal mine underground considering image enhancement[J]. Journal of Mine Automation,2023,49(5):74-81.
|
[7] |
纪平,胡学友,张瑞琦. 基于直方图均衡算法的图像增强技术研究[J]. 蚌埠学院学报,2021,10(2):40-43.
JI Ping,HU Xueyou,ZHANG Ruiqi. Research on image enhancement technology based on histogram equalization algorithm[J]. Journal of Bengbu University,2021,10(2):40-43.
|
[8] |
ZHAO Lijun,BAI Huihui,LIANG Jie,et al. Local activity-driven structural-preserving filtering for noise removal and image smoothing[J]. Signal Processing,2019,157:62-72. DOI: 10.1016/j.sigpro.2018.11.012
|
[9] |
魏华良,王金祥. 运动模糊数字图像边缘锐化增强仿真研究[J]. 计算机仿真,2020,37(7):459-462,497.
WEI Hualiang,WANG Jinxiang. Simulation research on edge sharpening enhancement of motion blurred digital image[J]. Computer Simulation,2020,37(7):459-462,497.
|
[10] |
贺元恺. 基于FPGA的实时图像去雾系统研究与设计[D]. 西安:西安科技大学,2020.
HE Yuankai. Research and design of real-time image defogging system based on FPGA[D]. Xi'an:Xi'an University of Science and Technology,2020.
|
[11] |
吴开兴,张琳,李丽宏. 煤矿井下雾尘图像清晰化算法[J]. 工矿自动化,2018,44(3):70-75.
WU Kaixing,ZHANG Lin,LI Lihong. Sharpening algorithm for underground images with fog and dust[J]. Industry and Mine Automation,2018,44(3):70-75.
|
[12] |
ZHAN Yutong,GAO Kun,WANG Junwei,et al. Single-image dehazing using extreme reflectance channel prior[J]. IEEE Access,2021,9:87826-87838. DOI: 10.1109/ACCESS.2021.3090202
|
[13] |
曹虎晨,姚善化,王仲根. 基于边界约束的煤矿井下尘雾图像去雾算法[J]. 工矿自动化,2022,48(6):139-146.
CAO Huchen,YAO Shanhua,WANG Zhonggen. Defogging algorithm of underground coal mine dust and fog image based on boundary constraint[J]. Journal of Mine Automation,2022,48(6):139-146.
|
[14] |
FENG Xiaomei,LI Jinjiang,HUA Zhen,et al. Low-light image enhancement based on multi-illumination estimation[J]. Applied Intelligence,2021(51):5111-5131.
|
[15] |
MERIANOS I,MITIANOUDIS N. Multiple-exposure image fusion for HDR image synthesis using learned analysis transformations[J]. Journal of Imaging,2019,5(3). DOI: 10.3390/jimaging5030032.
|
[16] |
CHEN Xiaobo,DU Hu,ZHAN Jinkai,et al. A self-adaptive multiple exposure image fusion method for highly reflective surface measurements[J]. Machines,2022(10). DOI: 10.3390/machines10111004.
|
[17] |
黄子蒙,徐望明,但愿. 基于对称亮度映射和虚拟多曝光融合的非均匀光照图像增强[J]. 液晶与显示,2022,37(12):1580-1589. DOI: 10.37188/CJLCD.2022-0172
HUANG Zimeng,XU Wangming,DAN Yuan. Non-uniform illumination image enhancement via symmetric brightness mapping and virtual multi-exposure fusion[J]. Chinese Journal of Liquid Crystals and Displays,2022,37(12):1580-1589. DOI: 10.37188/CJLCD.2022-0172
|
[18] |
WANG Xiaocheng,HU Ruimin,XU Xin. Single low-light image brightening using learning-based intensity mapping[J]. Neurocomputing,2022,508:315-323. DOI: 10.1016/j.neucom.2022.08.042
|
[19] |
刘卫华,马碧燕. 基于图像全序列特征权重的多曝光图像融合方法[J]. 激光与光电子学进展,2022,59(8):289-299.
LIU Weihua,MA Biyan. Multiexposure image fusion method based on feature weight of image sequence[J]. Laser & Optoelectronics Progress,2022,59(8):289-299.
|
[20] |
GUO Xiaojie,LI Yu,LING Haibin. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2017,26(2):982-993. DOI: 10.1109/TIP.2016.2639450
|
[21] |
张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(增刊1):532-540. DOI: 10.13225/j.cnki.jccs.2020.0514
ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved retex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532-540. DOI: 10.13225/j.cnki.jccs.2020.0514
|
[1] | LI Zhongzhong, YAO Yupeng. A generation method for the cutting height template of the shearer drum based on working condition triggering[J]. Journal of Mine Automation, 2024, 50(4): 144-152. DOI: 10.13272/j.issn.1671-251x.2024010097 |
[2] | WANG Hongwei, GUO Junjun, LIANG Wei, GENG Yide, TAO Lei, LI Jin. Research on optimization of working performance of shearer drum[J]. Journal of Mine Automation, 2024, 50(4): 133-143. DOI: 10.13272/j.issn.1671-251x.2023100095 |
[3] | MIAO Jijun. Research on the application of permanent magnet direct drive drum in belt conveyor[J]. Journal of Mine Automation, 2023, 49(S1): 67-68,75. |
[4] | LI Minghao, NIU Hao, FAN Jiayi, ZHAO Lijuan, QIAO Jie. Optimization of coal loading performance of shearer screw drum[J]. Journal of Mine Automation, 2022, 48(10): 129-135. DOI: 10.13272/j.issn.1671-251x.2022050041 |
[5] | ZHUANG Deyu. Shearer drum load identification method based on audio recognition[J]. Journal of Mine Automation, 2022, 48(1): 16-20. DOI: 10.13272/j.issn.1671-251x.2021070027 |
[6] | YUAN Bin, WANG Yiliang, YANG Zhaojian. Simulation analysis of shearer drum cutting coal-rock under oblique cutting conditio[J]. Journal of Mine Automation, 2018, 44(1): 64-68. DOI: 10.13272/j.issn.1671-251x.2018.01.2017090011 |
[7] | CHEN Jinguo, LIU Chunsheng, FAN Jianhong, ZHANG Yanjun, WAN Feng. Modeling and simulation of drum height adjusting system of shearer[J]. Journal of Mine Automation, 2017, 43(10): 78-82. DOI: 10.13272/j.issn.1671-251x.2017.10.016 |
[8] | ZHANG Li. Design of temperature detection device for drum of belt conveyor[J]. Journal of Mine Automation, 2017, 43(7): 86-89. DOI: 10.13272/j.issn.1671-251x.2017.07.018 |
[9] | LI Chun-hua, LIU Chun-sheng. Analysis of Automatic Lifting Technology of Shearer Drum[J]. Journal of Mine Automation, 2005, 31(4): 48-51. |
[10] | Wu Hong-zhi , Lu Shu-quan , Chen Chong , Tao Rong . Experiment on Automatic Speed Regulator of Drum Shearers[J]. Journal of Mine Automation, 1999, 25(3): 6-8. |
1. |
杨瑞,鲍久圣,鲍周洋,阴妍,张磊,潘国宇,杨姣,葛世荣. 煤矿主运大巷轮式巡检机器人摇臂式行走机构设计与试验研究. 工矿自动化. 2025(01): 126-137 .
![]() | |
2. |
张旭飞,王运森,孟祥凯,王瑜,周红,李元辉. 金属矿山井下采场六足机器人运动分析及步态规划. 金属矿山. 2024(04): 193-201 .
![]() | |
3. |
郭文兵,吴东涛,白二虎,张璞,侯建军,张要展. 我国煤矿智能绿色开采技术现状与展望. 河南理工大学学报(自然科学版). 2023(05): 1-17 .
![]() | |
4. |
张丽娟,李学刚,冯立艳,张英. 多直线导向机构轨迹综合的代数求解. 机械设计与研究. 2021(04): 57-61+74 .
![]() | |
5. |
王国法,刘峰,庞义辉,任怀伟,马英. 煤矿智能化——煤炭工业高质量发展的核心技术支撑. 煤炭学报. 2019(02): 349-357 .
![]() | |
6. |
卢万杰,付华,赵洪瑞. 基于深度学习算法的矿用巡检机器人设备识别. 工程设计学报. 2019(05): 527-533 .
![]() |