HAO Bonan. Coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion[J]. Journal of Mine Automation,2023,49(11):100-106. DOI: 10.13272/j.issn.1671-251x.2023080105
Citation: HAO Bonan. Coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion[J]. Journal of Mine Automation,2023,49(11):100-106. DOI: 10.13272/j.issn.1671-251x.2023080105

Coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion

More Information
  • Received Date: August 27, 2023
  • Revised Date: November 14, 2023
  • Available Online: November 26, 2023
  • Factors such as dust and dim light in coal mines lead to low quality of collected images. The existing image enhancement methods have problems such as loss of image details, unclear local features, inability to eliminate noise, and unsatisfactory dust removal effects. In order to solve the above problems, a coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion is proposed. This method uses a simplified model of dust image and dark primary color theory, and introduces an adaptive attenuation coefficient to estimate the image transmittance. Based on the transmittance distribution, the original image of the object is restored using the simplified model of dust image to remove dust from the coal mine underground image. The method uses a multiple exposure fusion algorithm to generate a set of images with different exposure ratios for underexposed original images, and introduces a weight matrix to fuse these images with the original image, effectively improving the quality of dim light images. The experimental results show that compared to the histogram equalization method, the multiple-scale Retinex with color restoration method (MSRCR), and the improved Retinex method, this method has better results in dust removal and dim light enhancement, with higher color restoration, suppressed white edges and overexposure. The average contrast of the enhanced images has increased by 62.78%, 29.82%, 9.8%, and the average image entropy has increased by 34.13%, 14.12%, and 8.25%, respectively. The average lightness order error (LOE) has been reduced by 40.9%, 20.39%, and 8.5%, respectively. This method has the shortest computational time.
  • [1]
    程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [2]
    孔二伟,张亚邦,李佳悦,等. 面向煤矿井下低光照图像的增强方法[J]. 工矿自动化,2023,49(4):62-69,85.

    KONG Erwei,ZHANG Yabang,LI Jiayue,et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69,85.
    [3]
    龚云,颉昕宇. 基于同态滤波方法的煤矿井下图像增强技术研究[J]. 煤炭科学技术,2023,51(3):241-250.

    GONG Yun,XIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. Coal Science and Technology,2023,51(3):241-250.
    [4]
    JIANG He,CAI Huangkai,YANG Jie. Learning in-place residual homogeneity for image detail enhancement[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Calgary,2018:1428-1432.
    [5]
    智宁,毛善君,李梅. 基于双伽马函数的煤矿井下低亮度图像增强算法[J]. 辽宁工程技术大学学报(自然科学版),2018,37(1):191-197.

    ZHI Ning,MAO Shanjun,LI Mei. An enhancement algorithm for coal mine low illumination images based on bi-gamma function[J]. Journal of Liaoning Technical University(Natural Science),2018,37(1):191-197.
    [6]
    冯玮,姚顽强,蔺小虎,等. 顾及图像增强的煤矿井下视觉同时定位与建图算法[J]. 工矿自动化,2023,49(5):74-81.

    FENG Wei,YAO Wanqiang,LIN Xiaohu,et al. Visual simultaneous localization and mapping algorithm of coal mine underground considering image enhancement[J]. Journal of Mine Automation,2023,49(5):74-81.
    [7]
    纪平,胡学友,张瑞琦. 基于直方图均衡算法的图像增强技术研究[J]. 蚌埠学院学报,2021,10(2):40-43.

    JI Ping,HU Xueyou,ZHANG Ruiqi. Research on image enhancement technology based on histogram equalization algorithm[J]. Journal of Bengbu University,2021,10(2):40-43.
    [8]
    ZHAO Lijun,BAI Huihui,LIANG Jie,et al. Local activity-driven structural-preserving filtering for noise removal and image smoothing[J]. Signal Processing,2019,157:62-72. DOI: 10.1016/j.sigpro.2018.11.012
    [9]
    魏华良,王金祥. 运动模糊数字图像边缘锐化增强仿真研究[J]. 计算机仿真,2020,37(7):459-462,497.

    WEI Hualiang,WANG Jinxiang. Simulation research on edge sharpening enhancement of motion blurred digital image[J]. Computer Simulation,2020,37(7):459-462,497.
    [10]
    贺元恺. 基于FPGA的实时图像去雾系统研究与设计[D]. 西安:西安科技大学,2020.

    HE Yuankai. Research and design of real-time image defogging system based on FPGA[D]. Xi'an:Xi'an University of Science and Technology,2020.
    [11]
    吴开兴,张琳,李丽宏. 煤矿井下雾尘图像清晰化算法[J]. 工矿自动化,2018,44(3):70-75.

    WU Kaixing,ZHANG Lin,LI Lihong. Sharpening algorithm for underground images with fog and dust[J]. Industry and Mine Automation,2018,44(3):70-75.
    [12]
    ZHAN Yutong,GAO Kun,WANG Junwei,et al. Single-image dehazing using extreme reflectance channel prior[J]. IEEE Access,2021,9:87826-87838. DOI: 10.1109/ACCESS.2021.3090202
    [13]
    曹虎晨,姚善化,王仲根. 基于边界约束的煤矿井下尘雾图像去雾算法[J]. 工矿自动化,2022,48(6):139-146.

    CAO Huchen,YAO Shanhua,WANG Zhonggen. Defogging algorithm of underground coal mine dust and fog image based on boundary constraint[J]. Journal of Mine Automation,2022,48(6):139-146.
    [14]
    FENG Xiaomei,LI Jinjiang,HUA Zhen,et al. Low-light image enhancement based on multi-illumination estimation[J]. Applied Intelligence,2021(51):5111-5131.
    [15]
    MERIANOS I,MITIANOUDIS N. Multiple-exposure image fusion for HDR image synthesis using learned analysis transformations[J]. Journal of Imaging,2019,5(3). DOI: 10.3390/jimaging5030032.
    [16]
    CHEN Xiaobo,DU Hu,ZHAN Jinkai,et al. A self-adaptive multiple exposure image fusion method for highly reflective surface measurements[J]. Machines,2022(10). DOI: 10.3390/machines10111004.
    [17]
    黄子蒙,徐望明,但愿. 基于对称亮度映射和虚拟多曝光融合的非均匀光照图像增强[J]. 液晶与显示,2022,37(12):1580-1589. DOI: 10.37188/CJLCD.2022-0172

    HUANG Zimeng,XU Wangming,DAN Yuan. Non-uniform illumination image enhancement via symmetric brightness mapping and virtual multi-exposure fusion[J]. Chinese Journal of Liquid Crystals and Displays,2022,37(12):1580-1589. DOI: 10.37188/CJLCD.2022-0172
    [18]
    WANG Xiaocheng,HU Ruimin,XU Xin. Single low-light image brightening using learning-based intensity mapping[J]. Neurocomputing,2022,508:315-323. DOI: 10.1016/j.neucom.2022.08.042
    [19]
    刘卫华,马碧燕. 基于图像全序列特征权重的多曝光图像融合方法[J]. 激光与光电子学进展,2022,59(8):289-299.

    LIU Weihua,MA Biyan. Multiexposure image fusion method based on feature weight of image sequence[J]. Laser & Optoelectronics Progress,2022,59(8):289-299.
    [20]
    GUO Xiaojie,LI Yu,LING Haibin. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2017,26(2):982-993. DOI: 10.1109/TIP.2016.2639450
    [21]
    张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(增刊1):532-540. DOI: 10.13225/j.cnki.jccs.2020.0514

    ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved retex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532-540. DOI: 10.13225/j.cnki.jccs.2020.0514
  • Related Articles

    [1]LI Zhongzhong, YAO Yupeng. A generation method for the cutting height template of the shearer drum based on working condition triggering[J]. Journal of Mine Automation, 2024, 50(4): 144-152. DOI: 10.13272/j.issn.1671-251x.2024010097
    [2]WANG Hongwei, GUO Junjun, LIANG Wei, GENG Yide, TAO Lei, LI Jin. Research on optimization of working performance of shearer drum[J]. Journal of Mine Automation, 2024, 50(4): 133-143. DOI: 10.13272/j.issn.1671-251x.2023100095
    [3]MIAO Jijun. Research on the application of permanent magnet direct drive drum in belt conveyor[J]. Journal of Mine Automation, 2023, 49(S1): 67-68,75.
    [4]LI Minghao, NIU Hao, FAN Jiayi, ZHAO Lijuan, QIAO Jie. Optimization of coal loading performance of shearer screw drum[J]. Journal of Mine Automation, 2022, 48(10): 129-135. DOI: 10.13272/j.issn.1671-251x.2022050041
    [5]ZHUANG Deyu. Shearer drum load identification method based on audio recognition[J]. Journal of Mine Automation, 2022, 48(1): 16-20. DOI: 10.13272/j.issn.1671-251x.2021070027
    [6]YUAN Bin, WANG Yiliang, YANG Zhaojian. Simulation analysis of shearer drum cutting coal-rock under oblique cutting conditio[J]. Journal of Mine Automation, 2018, 44(1): 64-68. DOI: 10.13272/j.issn.1671-251x.2018.01.2017090011
    [7]CHEN Jinguo, LIU Chunsheng, FAN Jianhong, ZHANG Yanjun, WAN Feng. Modeling and simulation of drum height adjusting system of shearer[J]. Journal of Mine Automation, 2017, 43(10): 78-82. DOI: 10.13272/j.issn.1671-251x.2017.10.016
    [8]ZHANG Li. Design of temperature detection device for drum of belt conveyor[J]. Journal of Mine Automation, 2017, 43(7): 86-89. DOI: 10.13272/j.issn.1671-251x.2017.07.018
    [9]LI Chun-hua, LIU Chun-sheng. Analysis of Automatic Lifting Technology of Shearer Drum[J]. Journal of Mine Automation, 2005, 31(4): 48-51.
    [10]Wu Hong-zhi , Lu Shu-quan , Chen Chong , Tao Rong . Experiment on Automatic Speed Regulator of Drum Shearers[J]. Journal of Mine Automation, 1999, 25(3): 6-8.
  • Cited by

    Periodical cited type(6)

    1. 杨瑞,鲍久圣,鲍周洋,阴妍,张磊,潘国宇,杨姣,葛世荣. 煤矿主运大巷轮式巡检机器人摇臂式行走机构设计与试验研究. 工矿自动化. 2025(01): 126-137 . 本站查看
    2. 张旭飞,王运森,孟祥凯,王瑜,周红,李元辉. 金属矿山井下采场六足机器人运动分析及步态规划. 金属矿山. 2024(04): 193-201 .
    3. 郭文兵,吴东涛,白二虎,张璞,侯建军,张要展. 我国煤矿智能绿色开采技术现状与展望. 河南理工大学学报(自然科学版). 2023(05): 1-17 .
    4. 张丽娟,李学刚,冯立艳,张英. 多直线导向机构轨迹综合的代数求解. 机械设计与研究. 2021(04): 57-61+74 .
    5. 王国法,刘峰,庞义辉,任怀伟,马英. 煤矿智能化——煤炭工业高质量发展的核心技术支撑. 煤炭学报. 2019(02): 349-357 .
    6. 卢万杰,付华,赵洪瑞. 基于深度学习算法的矿用巡检机器人设备识别. 工程设计学报. 2019(05): 527-533 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (205) PDF downloads (55) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return