Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
ZHUANG Deyu. Shearer drum load identification method based on audio recognition[J]. Industry and Mine Automation,2022,48(1):16-20.  doi: 10.13272/j.issn.1671-251x.2021070027
Citation: ZHUANG Deyu. Shearer drum load identification method based on audio recognition[J]. Industry and Mine Automation,2022,48(1):16-20.  doi: 10.13272/j.issn.1671-251x.2021070027

Shearer drum load identification method based on audio recognition

doi: 10.13272/j.issn.1671-251x.2021070027
  • Received Date: 2021-07-11
  • Rev Recd Date: 2021-12-26
  • Publish Date: 2022-01-20
  • In order to solve the problems of the existing shearer drum load identification methods, such as difficult implementation of related algorithms, complex engineering implementation mode and high application difficulty, through analyzing the characteristics of the audio signal during shearer operation, a shearer drum load identification method based on audio recognition is proposed. In order to ensure that the audio signal in each analysis period has the same load condition under the same operation standard, the cutting current and the traction speed are introduced into the dynamic energy calculation as variables, and the dynamic energy normalization algorithm (DENA) is adopted to normalize the original audio signal of the shearer. The normalized signal is compared and analyzed with the signal in the standard operation condition library, and the difference between the two is judged by the maximum dissimilarity coefficient, so as to determine the characteristics of the drum load and realize the identification and judgment of the drum load. The test results show that DENA can effectively suppress the noise energy in the audio signal and improve the resolution of the key characteristic values in the audio signal. The boundary of the characteristic parameters of the audio signal is obvious when the shearer cuts coal and rock, and there is no cross aliasing phenomenon. Under ideal conditions, that is, when the maximum dissimilarity coefficient is less than 0.189, the total coal-rock interface recognition rate can reach 78.6%.

     

  • loading
  • [1]
    邱锦波. 滚筒采煤机自动化与智能化控制技术发展及应用[J]. 煤炭科学技术,2013,41(11):10-13.

    QIU Jinbo. Development and application of shearer automation and intelligent control technology[J]. Coal Science and Technology,2013,41(11):10-13.
    [2]
    杨健健. 采煤机工作状态参数与煤岩硬度影响关系研究[D]. 北京: 中国矿业大学(北京), 2013.

    YANG Jianjian. Research on the affect relationship between shearer working condition parametersand coal-rock hardness[D]. Beijing: China University of Mining and Technology(Beijing), 2013.
    [3]
    郝志勇, 周正啟, 袁智, 等. 基于实验测试的采煤机截割载荷的分形分布规律研究[J]. 应用力学学报,2019,36(2):417-423.

    HAO Zhiyong, ZHOU Zhengqi, YUAN Zhi, et al. Study on fractal distribution law of cutting load of shearer based on experimental tests[J]. Chinese Journal of Applied Mechanics,2019,36(2):417-423.
    [4]
    郝志勇, 张佩, 毛君, 等. 采煤机摇臂销轴力学特性检测试验[J]. 机械设计与研究,2017,33(2):119-121.

    HAO Zhiyong, ZHANG Pei, MAO Jun, et al. Experimental research on the mchannical behavior of ranging arm shell for shearer[J]. Machine Design & Research,2017,33(2):119-121.
    [5]
    郭会珍. 滚筒式采煤机截割部动力学特性研究[D]. 徐州: 中国矿业大学, 2014.

    GUO Huizhen. Research on dynamic characteristics of drum shearer cutting unit[D]. Xuzhou: China University of Mining and Technology, 2014.
    [6]
    蒋干. 基于多传感信息融合的采煤机煤岩截割状态识别技术研究[D]. 徐州: 中国矿业大学, 2019.

    JIANG Gan. Research on recognition technology of shearer coal-rock cutting status based on multi-sensor information fusion[D]. Xuzhou: China University of Mining and Technology, 2019.
    [7]
    刘译文. 基于红外热成像的采煤机截割模式识别方法研究[D]. 徐州: 中国矿业大学, 2018.

    LIU Yiwen. Research on shearer cutting pattern recognition method based on infrared thermal imaging[D]. Xuzhou: China University of Mining and Technology, 2018.
    [8]
    田立勇. 基于多源数据融合的采煤机截割载荷识别与预测研究[D]. 阜新: 辽宁工程技术大学, 2020.

    TIAN Liyong. Research on identification and prediction of shearer cutting load based on multi-source data fusion[D]. Fuxin: Liaoning Technical University, 2020.
    [9]
    张启志, 邱锦波, 庄德玉. 基于倒谱距离的采煤机煤岩截割振动信号识别[J]. 工矿自动化,2017,43(1):9-12.

    ZHANG Qizhi, QIU Jinbo, ZHUANG Deyu. Vibration signal identification of coal-rock cutting of shearer based on cepstral distance[J]. Industry and Mine Automation,2017,43(1):9-12.
    [10]
    张宇, 刘雨东, 计钊. 向量相似度测度方法[J]. 声学技术,2009,28(4):532-536. doi: 10.3969/j.issn1000-3630.2009.04.021

    ZHANG Yu, LIU Yudong, JI Zhao. Vector similarity measurement method[J]. Technical Acoustics,2009,28(4):532-536. doi: 10.3969/j.issn1000-3630.2009.04.021
    [11]
    吴婕萍, 李国辉. 煤岩界面自动识别技术发展现状及其趋势[J]. 工矿自动化,2015,41(12):44-49.

    WU Jieping, LI Guohui. Development status and tendency of automatic identification technologies of coal-rock interface[J]. Industry and Mine Automation,2015,41(12):44-49.
    [12]
    陈浜. 基于视觉计算的煤岩识别方法研究[D]. 北京: 中国矿业大学(北京), 2018.

    CHEN Bang. Methodological studies of coal-rock recognition through visual computing[D]. Beijing: China University of Mining and Technology(Beijing), 2018.
    [13]
    王昕, 苗曙光, 丁恩杰. 煤岩介质在太赫兹频段的介电特性研究[J]. 中国矿业大学学报,2016,45(4):739-746.

    WANG Xin, MIAO Shuguang, DING Enjie. Study of dielectric property of coal and rock medium in terahertz domain[J]. Journal of China University of Mining & Technology,2016,45(4):739-746.
    [14]
    刘泽. 采煤机摇臂振动信号分析及其截割模式识别方法研究[D]. 徐州: 中国矿业大学, 2017.

    LIU Ze. Research on vibration signal of shearer rocker arm and its cutting pattern recognition method[D]. Xuzhou: China University of Mining and Technology, 2017.
    [15]
    张启志. 采煤机截割振动信号采集系统的研究[D]. 北京: 煤炭科学研究总院, 2017.

    ZHANG Qizhi. Research on cutting vibration signal acquisition system of shearer[D]. Beijing: China Coal Research Institute, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (216) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return