FENG Wei, YAO Wanqiang, LIN Xiaohu, et al. Visual simultaneous localization and mapping algorithm of coal mine underground considering image enhancement[J]. Journal of Mine Automation,2023,49(5):74-81. DOI: 10.13272/j.issn.1671-251x.2022090025
Citation: FENG Wei, YAO Wanqiang, LIN Xiaohu, et al. Visual simultaneous localization and mapping algorithm of coal mine underground considering image enhancement[J]. Journal of Mine Automation,2023,49(5):74-81. DOI: 10.13272/j.issn.1671-251x.2022090025

Visual simultaneous localization and mapping algorithm of coal mine underground considering image enhancement

More Information
  • Received Date: September 07, 2022
  • Revised Date: May 14, 2023
  • Available Online: November 27, 2022
  • The visual simultaneous localization and mapping (SLAM) algorithm based on the feature point method has certain applications in coal mines. However, due to factors such as uneven lighting, variable lighting, and alternating light and dark areas, the image quality is poor and texture information is lacking. This results in low precision of feature extraction and matching in the front end of visual SLAM. The problem of tracking loss is prone to occur, which affects the positioning precision and mapping effect of the visual SLAM algorithm. This study proposes a visual SLAM algorithm of coal mine underground considering image enhancement. The overall performance of visual SLAM is improved through image enhancement processing. Retinex algorithm based on improved bilateral filter is used to enhance the coal mine underground image. The original RGB image is converted to HSI color space, and the improved bilateral filter replaces the Gaussian filter of the traditional Retinex algorithm as the central surrounding function. After the image reflection component is estimated, it is converted to RGB color space to obtain the final enhanced image. Retinex algorithm based on improved bilateral filter is introduced into the classical ORB-SLAM2 algorithm framework for pose estimation and mapping. Based on the data collection platform of the wheeled mine-used robot, the visual SLAM algorithm considering image enhancement is tested in the roadway environment of coal mine underground. The results show that, compared with the traditional Retinex algorithm, the coal mine image enhanced by the Retinex algorithm based on improved bilateral filter does not show obvious whitening and halo, and the image quality is improved. Compared with the ORB-SLAM2 algorithm, the visual SLAM algorithm considering image enhancement improves the quality and quantity of feature matching. It has a higher degree of overlap between estimated trajectories and real trajectories. It reduces the mean absolute trajector error by 76.2%. It establishes a more realistic and accurate 3D dense point cloud map of underground roadway.
  • [1]
    王龙. 基于航迹推算的井下人员定位关键算法研究[D]. 徐州: 中国矿业大学, 2015.

    WANG Long. Study on the key algorithms of underground personnel positioning based on dead reckoning[D]. Xuzhou: China University of Mining and Technology, 2015.
    [2]
    葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463.

    GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463.
    [3]
    杨必胜,梁福逊,黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报,2017,46(10):1509-1516.

    YANG Bisheng,LIANG Fuxun,HUANG Ronggang. Progress,challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1509-1516.
    [4]
    吴东金,夏林元. 面向室内WLAN定位的动态自适应模型[J]. 测绘学报,2015,44(12):1322-1330.

    WU Dongjin,XIA Linyuan. Dynamic adaptive model for indoor WLAN localization[J]. Acta Geodaetica et Cartographica Sinica,2015,44(12):1322-1330.
    [5]
    符世琛,李一鸣,杨健健,等. 基于超宽带技术的掘进机自主定位定向方法研究[J]. 煤炭学报,2015,40(11):2603-2610.

    FU Shichen,LI Yiming,YANG Jianjian,et al. Research on autonomous positioning and orientation method of roadheader based on ultra wide-band technology[J]. Journal of China Coal Society,2015,40(11):2603-2610.
    [6]
    李论,张著洪,丁恩杰,等. 基于RSSI的煤矿巷道高精度定位算法研究[J]. 中国矿业大学学报,2017,46(1):183-191,200.

    LI Lun,ZHANG Zhuhong,DING Enjie,et al. Precision positioning algorithm in coal mine tunnel based on RSSI[J]. Journal of China University of Mining & Technology,2017,46(1):183-191,200.
    [7]
    马宏伟,王岩,杨林. 煤矿井下移动机器人深度视觉自主导航研究[J]. 煤炭学报,2020,45(6):2193-2206.

    MA Hongwei,WANG Yan,YANG Lin. Research on depth vision based mobile robot autonomous navigation in underground coal mine[J]. Journal of China Coal Society,2020,45(6):2193-2206.
    [8]
    齐广峰,吕军锋. MEMS惯性技术的发展及应用[J]. 电子设计工程,2015,23(1):87-89,92.

    QI Guangfeng,LYU Junfeng. Evolution and application of MEMS inertial technology[J]. Electronic Design Engineering,2015,23(1):87-89,92.
    [9]
    江传龙,黄宇昊,韩超,等. 井下巡检无人机系统设计及定位与避障技术[J]. 机械设计与研究,2021,37(4):38-42,48.

    JIANG Chuanlong,HUANG Yuhao,HAN Chao,et al. Design of underground inspection UAV system and study of positioning and obstacle avoidance[J]. Machine Design & Research,2021,37(4):38-42,48.
    [10]
    FUENTES-PACHECO J,RUIZ-ASCENCIO J,RENDÓN-MANCHA J M. Visual simultaneous localization and mapping:a survey[J]. Artificial Intelligence Review,2015,43(1):55-81. DOI: 10.1007/s10462-012-9365-8
    [11]
    DURRANT-WHYTE H,BAILEY T. Simultaneous localization and mapping:part I[J]. IEEE Robotics & Automation Magazine,2006,13(2):99-110.
    [12]
    丁文东,徐德,刘希龙,等. 移动机器人视觉里程计综述[J]. 自动化学报,2018,44(3):385-400.

    DING Wendong,XU De,LIU Xilong,et al. Review on visual odometry for mobile robots[J]. Acta Automatica Sinica,2018,44(3):385-400.
    [13]
    尚磊,王杰,宋尊师,等. 基于单目ORB−SLAM2算法的煤矿搜救机器人定位研究[J]. 机床与液压,2020,48(11):49-52.

    SHANG Lei,WANG Jie,SONG Zunshi,et al. Research on the localization of the coal mine search and rescue robot based on the monocular ORB-SLAM2 algorithm[J]. Machine Tool & Hydraulics,2020,48(11):49-52.
    [14]
    MUR-ARTAL R,TARDOS J D. ORB-SLAM2:an open-source slam system for monocular,stereo,and RGB-D cameras[J]. IEEE Transactions on Robotics,2017,33(5):1255-1262.
    [15]
    ZHU Daixian,JI Kangkang,WU Dong,et al. A coupled visual and inertial measurement units method for locating and mapping in coal mine tunnel[J]. Sensors,2022,22(19):7437. DOI: 10.3390/s22197437
    [16]
    朱礼义. 矿井图像增强和井下人员检测算法的研究[D]. 徐州: 中国矿业大学, 2019.

    ZHU Liyi. Research on mine image enhancement and underground personnel detection[D]. Xuzhou: China University of Mining and Technology, 2019.
    [17]
    洪炎,朱丹萍,龚平顺. 基于TopHat加权引导滤波的Retinex矿井图像增强算法[J]. 工矿自动化,2022,48(8):43-49.

    HONG Yan,ZHU Danping,GONG Pingshun. Retinex mine image enhancement algorithm based on TopHat weighted guided filtering[J]. Journal of Mine Automation,2022,48(8):43-49.
    [18]
    张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(增刊1):532-540.

    ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved retex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532-540.
    [19]
    谢凤英,汤萌,张蕊. 基于Retinex的图像增强方法综述[J]. 数据采集与处理,2019,34(1):1-11.

    XIE Fengying,TANG Meng,ZHANG Rui. Review of image enhancement algorithms based on Retinex[J]. Journal of Data Acquisition and Processing,2019,34(1):1-11.
    [20]
    GARCIA V, DEBREUVE E, NIELSEN F, et al. K-nearest neighbor search: Fast GPU-based implementations and application to high-dimensional feature matching[C]. IEEE International Conference on Image Processing, Hong Kong, 2010: 3757-3760.
    [21]
    STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGBD SLAM systems[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, New York, 2012: 573-580.
  • Related Articles

    [1]LI Shasha. Multi-source data processing and decision support system for coal mine based on artificial intelligence[J]. Journal of Mine Automation, 2024, 50(S2): 89-92.
    [2]FU Xiang, QIN Yifan, LI Haojie, NIU Penghao. Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine[J]. Journal of Mine Automation, 2023, 49(9): 122-131, 139. DOI: 10.13272/j.issn.1671-251x.18113
    [3]XING Zhen, HAN An, CHEN Xiaojing, CHEN Haijian, SHEN Yi. Research on intelligent mine disaster digital twin based on industrial Internet[J]. Journal of Mine Automation, 2023, 49(2): 23-30, 55. DOI: 10.13272/j.issn.1671-251x.2022120050
    [4]WANG Ye, LI Yufeng, ZHAO Xueyi. Application of domestic control system in intelligent construction of Dapingtan Coal Mine[J]. Journal of Mine Automation, 2022, 48(S1): 116-120.
    [5]GUO Yonghong, LIU Daoyuan, YANG Yunbo. Design of mine remote identification system based on artificial intelligence technology[J]. Journal of Mine Automation, 2022, 48(S1): 105-107.
    [6]JIANG Quanle. Research on construction of intelligent information system in Guojiawan Coal Mine[J]. Journal of Mine Automation, 2022, 48(S1): 58-60,85.
    [7]JIN Zhixin, WANG Hongwei, FU Xiang. Development path of new generation intelligent coal mine under HCPS theory system[J]. Journal of Mine Automation, 2022, 48(10): 1-12. DOI: 10.13272/j.issn.1671-251x.17988
    [8]WEI Jinglong. Research on intelligent mine constructio[J]. Journal of Mine Automation, 2021, 47(S1): 19-20.
    [9]XIE Hai-dong, LI Song-lin, WANG Chun-lei, ZHOU Liang. Research of Intelligent Mine System Based on Internet of Things[J]. Journal of Mine Automation, 2011, 37(3): 63-66.
    [10]LI Wen-hua, LI Tao, YANG Xu. Underground Drainage System Based on Artificial Intelligence Control[J]. Journal of Mine Automation, 2010, 36(1): 88-90.
  • Cited by

    Periodical cited type(15)

    1. 余彦,蔡霖,张冲,冀弘帅. 基于密度聚类的复杂装备健康监测方法. 指挥控制与仿真. 2024(02): 69-77 .
    2. 田劼,田壮,郭红飞,刘凝哲,马建武. 矿用钢丝绳损伤检测磁通回路优化设计. 工矿自动化. 2022(03): 118-122 . 本站查看
    3. 祁东明. 海洋石油平台注水泵在线监测与故障智能诊断技术应用. 石油工业技术监督. 2021(03): 9-13 .
    4. 钱柄旭,贾清华,付志明,宋狄,徐桂云. 矿井提升机刚性罐道滚轮充发电装置. 煤矿机械. 2021(04): 115-117 .
    5. 张梅,陈万利,许桃. 基于LS-SVM的矿井提升机故障预测. 电子测量技术. 2021(12): 70-74 .
    6. 田劼,王洋洋,郭红飞,赵彩跃. 基于漏磁检测的钢丝绳探伤原理与方法研究. 煤炭工程. 2021(09): 95-100 .
    7. 李臻,贾洪钢. 嵌入式煤机设备状态监测装置设计. 煤矿机电. 2021(04): 11-13+17 .
    8. 何俊峰. 矿井提升机闸瓦间隙模糊控制系统研究. 自动化仪表. 2020(01): 61-64 .
    9. 张雅楠,李飞,卞学平,韩志鑫,王璇,於思彤. 基于互联网的提升设备工况监测与智能诊断系统. 科技风. 2020(08): 117-118 .
    10. 高许,邓世建,蔡雨盛. 基于PyQt的矿井提升机温度监测系统设计. 煤矿机电. 2020(02): 8-11 .
    11. 阎东慧. 矿井提升机自适应无线通信系统设计. 工矿自动化. 2020(05): 99-103 . 本站查看
    12. 丁恩杰,俞啸,廖玉波,吴传龙,陈伟,郁万里,王威. 基于物联网的矿山机械设备状态智能感知与诊断. 煤炭学报. 2020(06): 2308-2319 .
    13. 宋绪国,高国庆,苏丛,夏昊天. 蓄水电站水污染环境下职工健康状况监测系统设计. 粘接. 2020(07): 54-58 .
    14. 吴杰. 基于物联网的矿井提升机监测与故障诊断系统. 信息与电脑(理论版). 2020(12): 163-165 .
    15. 田劼,胡耀松,郭红飞,赵彩跃. 基于霍尔元件的矿用钢丝绳探伤仪研究. 工矿自动化. 2019(11): 75-80 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (869) PDF downloads (41) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return