Study on the determination of support resistance and instability criteria for flexible concrete wall support in gob-side entry retaining at Daliuta Coal Mine
-
摘要:
柔模砼墙沿空留巷工作面覆岩垮落结构与砼墙的稳定性是留巷成功与否的关键。以大柳塔煤矿52606工作面为研究对象,通过相似材料模拟实验发现在52605工作面和52606工作面回采结束后,砼墙上方覆岩垮落呈短悬臂梁结构,且砼墙侧垮落角均大于煤壁侧垮落角,二次采动后2个工作面裂隙贯通向地表发育,砼墙上方地面出现略微沉降。针对上述情况,通过分析覆岩垮落结构特征,确定了沿空巷道顶板第1次断裂位置位于采空区上方充填体一侧,第2次断裂位置位于采空区形成悬臂梁结构的岩层中靠近煤壁侧,并结合理论分析得到柔模砼墙沿空留巷应力分布特征。根据沿空巷道不同使用阶段门式支架是否撤出,提出留巷阶段砼墙的支护阻力采用分离岩块法计算,巷道复用阶段砼墙的支护阻力采用倾斜岩梁法计算;柔模砼墙的稳定性与安全系数有关,工作面回采过程中保证安全系数大于1,则砼墙不会发生失稳破坏。实例验证结果表明:该留巷工作面使用门式支架做临时支护时,为保证砼墙的安全系数大于2,需保证砼墙强度达到5.4 MPa以上;撤出门式支架后,断裂岩块及其覆岩载荷由砼墙承担,且采动引起的动载不断对砼墙产生影响,但砼墙的安全系数为3.9,砼墙仍相对稳定;砼墙应力虽然是不断变化的,但变化幅度都不大,均未出现应力急剧增大或减小的现象,这说明砼墙可有效支撑顶板,且砼墙一直处于稳定状态。
Abstract:The stability of the gob-side entry retaining with flexible concrete walls and the collapse structure of the overburden above the working face are key factors that determine the success of entry retaining. Taking the 52606 working face at Daliuta Coal Mine as the research object, a similar material simulation experiment was conducted. The results showed that after mining the 52605 and 52606 working faces, the overburden above the concrete wall collapsed into a short cantilever beam structure. The side collapse angle of the concrete wall was greater than that of the coal wall. After secondary mining, fractures developed from the two working faces, connecting to the surface, and slight ground subsidence appeared above the concrete wall. Based on the analysis of the overburden collapse structure characteristics, it was determined that the first fracture of the roof in the gob-side entry occurred on the side of the backfill material above the gob area, while the second fracture occurred in the rock layer forming the cantilever beam structure near the coal wall. Combining theoretical analysis, the stress distribution characteristics of the flexible concrete walls in the gob-side entry were obtained. According to whether the portal support was removed during different stages of gob-side entry usage, it was proposed that the support resistance of the concrete wall during the retaining phase should be calculated using the separated rock block method, while the support resistance during the reuse phase should be calculated using the inclined rock beam method. The stability of the flexible concrete wall was found to be related to its safety factor. During the mining process, as long as the safety factor remained greater than 1, the concrete wall would not experience instability or failure. Verification results showed that when portal support was used as temporary support during the retaining phase, to ensure the safety factor of the concrete wall was greater than 2, its strength had to exceed 5.4 MPa. After the portal support was removed, the fractured rock blocks and overburden load were borne by the concrete wall. Additionally, dynamic loads caused by mining continued to affect the concrete wall. However, the safety factor of the concrete wall was 3.9, indicating that the wall remained relatively stable. Although the stress on the concrete wall changed continuously, the changes were not significant, and no sharp increases or decreases in stress were observed. This suggests that the concrete wall could effectively support the roof, maintaining stability throughout.
-
-
表 1 岩层物理力学参数
Table 1 Physical and mechanical parameters of rock layers
岩层 岩性 厚度/m 密度/(kg·m−3) 抗压强度/MPa 抗拉强度/MPa 泊松比 黏聚力/MPa 内摩擦角/(°) 基本顶 细粒砂岩 13.80 2401 81.90 4.45 0.16 6.24 41.0 直接顶 粉砂岩 1.80 2397 69.78 2.52 0.18 6.59 39.1 煤层 5−2煤层 4.30 1287 21.47 1.15 0.22 1.24 47.1 直接底 粉砂岩 2.91 2495 88.88 1.52 0.15 7.93 33.2 -
[1] 谭云亮,于凤海,宁建国,等. 沿空巷旁支护适应性原理与支护方法[J]. 煤炭学报,2016,41(2):376-382. TAN Yunliang,YU Fenghai,NING Jianguo,et al. Adaptability theory of roadside support in gob-side entry retaining and its supporting design[J]. Journal of China Coal Society,2016,41(2):376-382.
[2] 薛卫峰,侯恩科,王苏健. 无煤柱切顶沿空留巷底板破坏规律[J]. 西安科技大学学报,2022,42(6):1133-1139. XUE Weifeng,HOU Enke,WANG Sujian. Floor failure law of gob-side entry retaining with roof cutting and non-pillar mining[J]. Journal of Xi'an University of Science and Technology,2022,42(6):1133-1139.
[3] 何满潮,宋振骐,王安,等. 长壁开采切顶短壁梁理论及其110工法——第三次矿业科学技术变革[J]. 煤炭科技,2017(1):1-9,13. DOI: 10.3969/j.issn.1008-3731.2017.01.001 HE Manchao,SONG Zhenqi,WANG An,et al. Theory of longwall mining by using roof cuting shortwall team and 110 method-the third mining science and technology reform[J]. Coal Science & Technology Magazine,2017(1):1-9,13. DOI: 10.3969/j.issn.1008-3731.2017.01.001
[4] 孙靖康,涂敏,赵庆冲,等. 深埋矿井沿空留巷切顶卸压底板变形控制[J]. 工矿自动化,2024,50(7):165-172. SUN Jingkang,TU Min,ZHAO Qingchong,et al. Floor deformation control for roof cutting and pressure relief in gob-side entry retaining of deep buried mines[J]. Journal of Mine Automation,2024,50(7):165-172.
[5] 王方田,江振鹏,刘超,等. 深井综采面动压区沿空留巷围岩变形机理及锚索强化支护技术[J]. 采矿与安全工程学报,2024,41(6):1103-1115. WANG Fangtian,JIANG Zhenpeng,LIU Chao,et al. Surrounding rock movement mechanism and cable reinforcement support technology for gob-side entry retaining in the dynamic pressure area of deep fully- mechanized mining face[J]. Journal of Mining & Safety Engineering,2024,41(6):1103-1115.
[6] 严超超,张国恩,常通,等. 浅埋中厚煤层沿空留巷底板变形力学分析及底鼓控制技术[J]. 煤炭科学技术,2024,52(10):11-20. DOI: 10.12438/cst.20231382 YAN Chaochao,ZHANG Guoen,CHANG Tong,et al. Mechanical analysis of floor deformation and floor heave control technology for gob-side entry retaining in medium thick coal seam with shallow cover depth[J]. Coal Science and Technology,2024,52(10):11-20. DOI: 10.12438/cst.20231382
[7] 康志鹏,段昌瑞,余国锋,等. 厚煤层软底沿空留巷围岩变形特征分析及顶帮强化支护技术[J]. 工矿自动化,2022,48(11):101-109. KANG Zhipeng,DUAN Changrui,YU Guofeng,et al. Analysis on deformation characteristics of surrounding rock of gob-side entry retaining with soft bottom in thick coal seam and strengthening support technology of roof and side[J]. Journal of Mine Automation,2022,48(11):101-109.
[8] 华心祝,李琛,刘啸,等. 再论我国沿空留巷技术发展现状及改进建议[J]. 煤炭科学技术,2023,51(1):128-145. HUA Xinzhu,LI Chen,LIU Xiao,et al. Current situation of gob-side entry retaining and suggestions for its improvement in China[J]. Coal Science and Technology,2023,51(1):128-145.
[9] 郭海军,杜怀龙. 厚煤层沿空留巷柔模混凝土充填体合理宽度确定[J]. 煤炭科学技术,2022,50(增刊2):105-112. GUO Haijun,DU Huailong. Research and application of flexible formwork concrete gob-side entry retaining technology in thick coal seam[J]. Coal Science and Technology,2022,50(S2):105-112.
[10] 汪北方,蒋嘉祺,刘学生,等. 浅埋厚松散层薄基岩综采工作面开采覆岩切落体结构分析及应用[J]. 岩土力学,2023,44(10):3011-3021. WANG Beifang,JIANG Jiaqi,LIU Xuesheng,et al. Analysis and application of sheared and fallen roof structure during shallowly buried fully mechanized mining under thick loose bed and thin base rock[J]. Rock and Soil Mechanics,2023,44(10):3011-3021.
[11] 唐杰兵,鞠文君,陈法兵. 动静载下深井临空巷道冲击破坏分析及防治[J]. 工矿自动化,2021,47(11):88-94,134. TANG Jiebing,JU Wenjun,CHEN Fabing. Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load[J]. Industry and Mine Automation,2021,47(11):88-94,134.
[12] 柏建彪,张自政,王襄禹,等. 高水材料充填沿空留巷应力控制与围岩强化机理及应用[J]. 煤炭科学技术,2022,50(6):16-28. BAI Jianbiao,ZHANG Zizheng,WANG Xiangyu,et al. Stress control and surrounding rock strengthening mechanism of gob-side entry retaining with high-water content material filling and its application[J]. Coal Science and Technology,2022,50(6):16-28.
[13] 张农,韩昌良,阚甲广,等. 沿空留巷围岩控制理论与实践[J]. 煤炭学报,2014,39(8):1635-1641. ZHANG Nong,HAN Changliang,KAN Jiaguang,et al. Theory and practice of surrounding rock control for pillarless gob-side entry retaining[J]. Journal of China Coal Society,2014,39(8):1635-1641.
[14] 朱永建,任恒,王平,等. 倾斜厚层坚硬顶板条件下沿空留巷稳定性控制[J]. 中南大学学报(自然科学版),2023,54(3):956-966. DOI: 10.11817/j.issn.1672-7207.2023.03.014 ZHU Yongjian,REN Heng,WANG Ping,et al. Stability control of gob-side entry retention under the condition of inclined thick layer and hard roof[J]. Journal of Central South University(Science and Technology),2023,54(3):956-966. DOI: 10.11817/j.issn.1672-7207.2023.03.014
[15] 陈上元,何满潮,郭志飚,等. 深部沿空切顶成巷围岩稳定性控制对策[J]. 工程科学与技术,2019,51(5):107-116. CHEN Shangyuan,HE Manchao,GUO Zhibiao,et al. Control countermeasures of surrounding rock in deep gob-side entry retaining by cutting roof[J]. Advanced Engineering Sciences,2019,51(5):107-116.
[16] 何廷峻. 应用Wilson铰接岩块理论进行巷旁支护设计[J]. 岩石力学与工程学报,1998(2):63-67. DOI: 10.3321/j.issn:1000-6915.1998.02.011 HE Tingjun. Gateside supports designde by wilson theory of hinged rock block[J]. Chinese Journal of Rock Mechanics and Engineering,1998(2):63-67. DOI: 10.3321/j.issn:1000-6915.1998.02.011
[17] 王军,高延法,何晓升,等. 沿空留巷巷旁支护参数分析与钢管混凝土墩柱支护技术研究[J]. 采矿与安全工程学报,2015,32(6):943-949. WANG Jun,GAO Yanfa,HE Xiaosheng,et al. The analysis of roadside supporting parameters and the support technology in the concrete filled steel tubular column in goaf-side entry retaining[J]. Journal of Mining & Safety Engineering,2015,32(6):943-949.
[18] 涂敏. 沿空留巷顶板运动与巷旁支护阻力研究[J]. 辽宁工程技术大学学报(自然科学版),1999(4):347-351. TU Min. Study on roof movement and roadway-side supporting resistance of remained roadway[J]. Journal of Liaoning Technical University(Natural Science),1999(4):347-351.
[19] 王东攀,杨鸿智,袁伟茗,等. 厚煤层综放沿空留巷“支−卸”协同围岩控制技术[J]. 采矿与岩层控制工程学报,2022,4(4):32-42. WANG Dongpan,YANG Hongzhi,YUAN Weiming,et al. A "support and pressure relief" ground control technology for double-used roadway with fully-mechanized caving method in thick coal seam[J]. Journal of Mining and Strata Control Engineering,2022,4(4):32-42.
[20] 陈定超,王襄禹,吴帅,等. 柔模混凝土墙沿空留巷围岩稳定机理及控制技术研究[J]. 中南大学学报(英文版),2023,30(9):2966-2982. DOI: 10.1007/s11771-023-5436-z CHEN Dingchao,WANG Xiangyu,WU Shuai,et al. Study on stability mechanism and control techniques of surrounding rock in gob-side entry retaining with flexible formwork concrete wall[J]. Journal of Central South University,2023,30(9):2966-2982. DOI: 10.1007/s11771-023-5436-z
[21] 陈昱翰,陶毅,古金本,等. FRP约束十字型钢混凝土组合柱轴压承载力计算[J/OL]. 工程力学:1-14[2024-08-17]. http://kns.cnki.net/kcms/detail/11.2595.o3.20241125.1448.007.html. CHEN Yuhan,TAO Yi,GU Jinben,et al. Calculation of axial compressive behaviour of FRP confined concrete-encased cross-shaped steel[J/OL]. Engineering Mechanics:1-14[2024-08-17]. http://kns.cnki.net/kcms/detail/11.2595.o3.20241125.1448.007.html.
-
期刊类型引用(10)
1. 王生彪,郭明旭,何明伟. 沿空留巷工作面弧形三角区悬顶水力压裂治理技术研究. 中国煤炭. 2023(S2): 158-163 . 百度学术
2. 陈真,石蒙,杨征,谢永利,司建锋. 大采高工作面二次动压巷道水力压裂切顶卸压技术研究. 中国矿业. 2021(04): 134-139 . 百度学术
3. 张瑞,蔡青旺,黄炳香,陈树亮,金峰. 顾桥矿顶板水力压裂控制大巷变形技术研究. 煤炭工程. 2021(05): 45-50 . 百度学术
4. 张毅. 开元矿厚煤层开采水力压裂卸压技术研究. 矿业装备. 2021(03): 14-15 . 百度学术
5. 王建胜. 综采工作面坚硬顶板处理方式的选择. 西部探矿工程. 2021(12): 136-138+141 . 百度学术
6. 陈树亮,黄炳香,李丁,赵兴龙,徐杰,王常委. 煤岩体高压磨料水力割缝基本规律的试验研究. 采矿与岩层控制工程学报. 2020(04): 90-96 . 百度学术
7. 王杜虎. 水力压裂代替聚能管爆破预裂的可行性分析. 能源技术与管理. 2020(05): 58-60 . 百度学术
8. 张广杰,程志斌,丁坤朋. 定向水力压裂切顶卸压技术研究及应用. 山西冶金. 2020(05): 51-53+60 . 百度学术
9. 王浩鹏. 基于马兰矿坚硬顶板的水力压裂技术试验研究. 中国煤炭. 2020(11): 78-82 . 百度学术
10. 胡沛,赵寒. 胡家河矿临空掘进水力压裂切顶技术及应用. 内蒙古煤炭经济. 2020(18): 137-139 . 百度学术
其他类型引用(2)