基于卷积神经网络和模糊PID的掘进机截割控制系统研究

李英娜, 崔彦平, 安博烁, 刘百健, 靳建伟

李英娜,崔彦平,安博烁,等. 基于卷积神经网络和模糊PID的掘进机截割控制系统研究[J]. 工矿自动化,2025,51(1):61-70, 137. DOI: 10.13272/j.issn.1671-251x.2024070084
引用本文: 李英娜,崔彦平,安博烁,等. 基于卷积神经网络和模糊PID的掘进机截割控制系统研究[J]. 工矿自动化,2025,51(1):61-70, 137. DOI: 10.13272/j.issn.1671-251x.2024070084
LI Yingna, CUI Yanping, AN Boshuo, et al. Research on the roadheader cutting control system based on convolutional neural network and fuzzy PID[J]. Journal of Mine Automation,2025,51(1):61-70, 137. DOI: 10.13272/j.issn.1671-251x.2024070084
Citation: LI Yingna, CUI Yanping, AN Boshuo, et al. Research on the roadheader cutting control system based on convolutional neural network and fuzzy PID[J]. Journal of Mine Automation,2025,51(1):61-70, 137. DOI: 10.13272/j.issn.1671-251x.2024070084

基于卷积神经网络和模糊PID的掘进机截割控制系统研究

基金项目: 中央引导地方科技发展资金项目(226Z1906G);河北省高等学校自然科学研究项目(CXY2024038);石家庄市驻冀高校基础研究项目(241791157A)。
详细信息
    作者简介:

    李英娜(1983—),女,河北石家庄人,硕士研究生,研究方向为电力电子、机械电子工程,E-mail:15533113702@163.com

  • 中图分类号: TD632

Research on the roadheader cutting control system based on convolutional neural network and fuzzy PID

  • 摘要:

    针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策略由CNN煤岩硬度动态感知模块和截割臂摆速模糊PID控制模块组成。提出一种有效的截割路径,使截割头沿规划路径从上至下进行煤岩截割,以提高断面完整性,减小掘进方向的误差。采用CNN煤岩硬度动态感知模块分析采集的截割电动机电流、截割臂振动加速度、回转油缸压力数据信息,以感知煤岩特性;采用截割臂摆速模糊PID控制模块对感知后的数据进行模糊化与解模糊化处理,输出相应控制参数信号;电液比例阀根据接收到的信号控制液压油的流量和压力,通过阀控液压缸控制截割臂摆速,实现截割臂摆速的自适应控制。现场实验结果表明:当掘进机截割较软介质与煤时,截割臂以高摆速工作;当掘进机截割复杂岩层时,摆速随截割信号的增大而降低,截割信号在0~1之间变动;当掘进机截割较硬岩层时,截割载荷信号接近1,截割臂的摆速降低至0。

    Abstract:

    In response to the insufficient adaptability and low system stability of cantilever roadheader when facing changes in coal and rock hardness during tunneling, a roadheader cutting control system based on convolutional neural networks (CNN) and fuzzy PID is proposed. This includes two parts: the cross-section forming characteristics of the tunnel and the intelligent cutting control strategy. The intelligent roadheader cutting control strategy consists of a CNN coal rock hardness dynamic perception module and a cutting arm swing speed fuzzy PID control module. An effective cutting path is proposed to make the cutting head cut coal and rock top to bottom along the planned path, aiming to improve the integrity of the cross-section and reduce the error in the tunneling direction. The CNN coal and hardness dynamic perception module is used to analyze the collected cutting motor current, cutting arm vibration acceleration, and rotary oil cylinder pressure data information to perceive the characteristics of coal and; the cutting arm swing speed fuzzy PID control module is used to process the perceived data for fuzzification and defuzzification, and to output the corresponding control parameter signals the electro-hydraulic proportional valve controls the flow and pressure of hydraulic oil according to the received signals, and then the valve-controlled hydraulic cylinder controls the swing speed of cutting arm, achieving the adaptive control of the cutting arm swing speed. The experimental results in the field show that when the roadheader cuts softer media and coal, the arm works at a high swing speed; when cutting complex rock strata, the swing speed decreases as the cutting signal increases, and the cutting signal varies between 0-1; when the roadheader cuts harder rock strata, the cutting load signal is close to 1, and the swing speed of the cutting arm is reduced 0.

  • 图  1   基于CNN和模糊PID的掘进机截割控制系统结构

    Figure  1.   Structure of roadheader cutting control system based on convolutional neural network(CNN) and fuzzy proportional integral derivative(PID)

    图  2   截割路径

    Figure  2.   Cutting path

    图  3   矩形断面截割轮廓

    Figure  3.   Cutting contour of rectangular cross-section

    图  4   截割断面轮廓仿真

    Figure  4.   Simulation of cutting cross-section contour

    图  5   平面极限运行轨迹轮廓仿真

    Figure  5.   Simulation of planar limit operating trajectory contour

    图  6   平面矩形截割仿真

    Figure  6.   Simulation of planar rectangular cutting

    图  7   掘进机智能截割控制策略

    Figure  7.   Intelligent cutting control strategy for roadheader

    图  8   CNN煤岩硬度动态感知模块结构

    Figure  8.   Structure of the CNN-based coal rock hardness dynamic perception module

    图  9   CNN煤岩硬度动态感知模块的迭代过程

    Figure  9.   Iterative process of the CNN-based coal rock hardness dynamic perception module

    图  10   截割臂摆速模糊PID控制模块结构

    Figure  10.   Structure of fuzzy PID control module for cutting arm swing speed

    图  11   隶属度函数曲线

    Figure  11.   Membership function curves

    图  12   截割臂摆速模糊PID控制模块输出

    Figure  12.   The output of fuzzy PID control module for cutting arm swing speed

    图  13   截割臂摆速仿真控制系统控制流程

    Figure  13.   Control flow of the cutting arm swing speed simulation control system

    图  14   截割臂摆速控制仿真结果

    Figure  14.   Simulation results of cutting arm swing speed control

    图  15   地面实验现场

    Figure  15.   Field experiment at ground testing facility

    图  16   控制信号分析对比结果

    Figure  16.   Comparison results of control signal analysis

    表  1   掘进机参数

    Table  1   Roadheader parameters

    回转关节摆角θ1/(°) 升降关节摆角θ2/(°) 伸缩量d3/mm
    (−39,39) (−121,−48) [0,500]
    下载: 导出CSV

    表  2   样本数据与载荷关系

    Table  2   Relationship between sample data and load

    参数 不同煤岩种类的参数值
    较软介质与煤 煤岩夹杂 硬岩
    煤岩硬度 0~3 3~6 ≥6
    截割电动机电流/A <68 68~121 ≥121
    回转油缸压力/MPa <10 10~21 ≥21
    截割臂振动加速度/(m·s−2 <25.40 25.40~56.84 ≥56.84
    截割载荷/kN ≤20.29 20.29~54.7 ≥54.7
    下载: 导出CSV

    表  3   $ {\Delta K}_{{\mathrm{p}}} $模糊规则

    Table  3   $ {\Delta K}_{{\mathrm{p}}} $ fuzzy rule

    en
    NBNMNSZOPSPMPB
    NBNBPBPMPMPSZOZO
    NMPBPBPMPSPSZONS
    NSPMPMPMPSZONSNS
    ZOPMPMPSZONSNMNM
    PSPSPSZONSNSNMNM
    PMPSPSNSNMNMNMNB
    PBZOZONMNMNMNBNB
    下载: 导出CSV

    表  4   $ \Delta {K}_{{\mathrm{i}}} $模糊规则

    Table  4   $ \Delta {K}_{{\mathrm{i}}} $ fuzzy rule

    en
    NBNMNSZOPSPMPB
    NBNBNBNMNMNSZOZO
    NMNBNBNMNSNSZOZO
    NSNBNMNSNSZOPSPS
    ZONMNMNSZOPSPMPM
    PSNMNSZOPSPSPMPB
    PMZOZOPSPSPMPBPB
    PBZOZOPSPMPMPBPB
    下载: 导出CSV

    表  5   $ \Delta {K}_{{\mathrm{d}}} $模糊规则

    Table  5   $ \Delta {K}_{{\mathrm{d}}} $ fuzzy rule

    e n
    NB NM NS ZO PS PM PB
    NB PS NS NB NB NB NM PS
    NM PS NS NB NM NM NS ZO
    NS ZO NS NM NM NS NS ZO
    ZO ZO NS NS NS NS NS ZO
    PS ZO ZO ZO ZO ZO ZO ZO
    PM PB NS PS PS PS PS PB
    PB PB PM PM PM PS PS PB
    下载: 导出CSV

    表  6   截割臂摆速仿真控制系统参数

    Table  6   Parameters of cutting arm swing speed simulation control system

    参数 参数
    $ C_{\mathrm{\alpha\mathrm{ }}} $/$ {({\mathrm{m}}}^{3}·{{\mathrm{s}}^{-1}· {\mathrm{A}}}^{-1}) $ $ 3.5\times {10}^{-4} $ $ {\delta }_{{\mathrm{h}}} $ 0.180
    $ {\omega }_{{\mathrm{v}}} $/$ ({\mathrm{rad}}·{\mathrm{s}}^{-1}) $ 157.100 $ {\omega }_{{\mathrm{h}}} $/$ ({\mathrm{rad}}·{\mathrm{s}}^{-1}) $ 55.570
    $ {\delta }_{{\mathrm{v}}} $ 0.600 $ {C}_{{\mathrm{b}}} $/$ ((^\circ) ·{{\mathrm{m}}}^{-1}) $ 80
    $ {A}_{{\mathrm{P}}} $/$ {m}^{2} $ 0.025 $ {C}_{\alpha } $/$ ({\mathrm{A}}·{{\mathrm{V}}}^{-1}) $ 0.200
    下载: 导出CSV
  • [1] 张超,张旭辉,张楷鑫,等. 数字孪生驱动掘进机远程自动截割控制技术[J]. 工矿自动化,2020,46(9):15-20,32.

    ZHANG Chao,ZHANG Xuhui,ZHANG Kaixin,et al. Digital twin driven remote automatic cutting control technology of roadheader[J]. Industry and Mine Automation,2020,46(9):15-20,32.

    [2] 伍普照. 悬臂式掘进机智能截割控制系统研究与设计[J]. 中国煤炭,2017,43(8):100-104.

    WU Puzhao. Research and design of intelligent cutting control system for boom-type roadheader[J]. China Coal,2017,43(8):100-104.

    [3] 刘辉,靳帅. 不同工况下掘进机水平方向振动特性分析[J]. 机械设计与研究,2020,36(5):198-202,207.

    LIU Hui,JIN Shuai. Analysis of horizontal vibration characteristics of roadheader under different working conditions[J]. Machine Design & Research,2020,36(5):198-202,207.

    [4] 王鹏江,杨阳,王东杰,等. 悬臂式掘进机煤矸智能截割控制系统与方法[J]. 煤炭学报,2021,46(增刊2):1124-1134.

    WANG Pengjiang,YANG Yang,WANG Dongjie,et al. Intelligent cutting control system and method of coal and gangue in robotic roadheader[J]. Journal of China Coal Society,2021,46(S2):1124-1134.

    [5] 曹军. 矿用悬臂式纵轴掘进机断面截割技术研究[D]. 西安:西安科技大学,2018.

    CAO Jun. Research on section cutting technology of the cantalever vertical axis roadheader[D]. Xi'an:Xi'an University of Science and Technology,2018.

    [6] 焦可辉. 纵轴式掘进机断面成形技术研究[D]. 西安:西安科技大学,2019.

    JIAO Kehui. Research on section forming technology of longitudinal roadheader[D]. Xi'an:Xi 'an University of Science and Technology,2019.

    [7] 宗凯. 悬臂式掘进机截割过程位姿响应与截割臂摆速控制研究[D]. 北京:中国矿业大学(北京),2019.

    ZONG Kai. Research on pose response of roadheader during cutting process and swing speed control of the cutting arm[D]. Bei jing:China University of Mining and Technology-Beijing,2019.

    [8] 谢亚洲. 悬臂式掘进机智能控制系统研究[D]. 西安:西安科技大学,2019.

    XIE Yazhou. Research on intelligent control system of boom-type roadheader[D]. Xi'an:Xi'an University of Science and Technology,2019.

    [9] 宋煜栋. 悬臂掘进机自动截割路径研究[J]. 江西煤炭科技,2024(1):57-60.

    SONG Yudong. Study on automatic cutting path of cantilever roadheader[J]. Jiangxi Coal Science & Technology,2024(1):57-60.

    [10] 张磊,周开平,张宁波,等. 悬臂式掘进机自动截割控制系统研究[J]. 金属矿山,2022(6):144-149.

    ZHANG Lei,ZHOU Kaiping,ZHANG Ningbo,et al. Research on automatic cutting control system of cantilever roadheader[J]. Metal Mine,2022(6):144-149.

    [11] 玉米提·尼加提,向晓丹,张官禹. 煤矿掘进机巷道断面自动截割成形控制方法研究[J]. 自动化应用,2024,65(16):4-7.

    YUMITI Nijiati,XIANG Xiaodan,ZHANG Guanyu. Research on automatic cutting and forming control method for tunnel cross-section of coal mine tunneling machine[J]. Automation Application,2024,65(16):4-7.

    [12] 黄国青. 悬臂式掘进机截割头自动截割成形控制仿真[J]. 煤矿机电,2024,45(3):71-74.

    HUANG Guoqing. Simulation of automatic cutting and forming control for the cutting head of the cantilever tunneling boring machine[J]. Colliery Mechanical & Electrical Technology,2024,45(3):71-74.

    [13] 王东杰,王鹏江,李悦,等. 掘进机截割臂自适应截割控制策略研究[J]. 中国机械工程,2022,33(20):2492-2501.

    WANG Dongjie,WANG Pengjiang,LI Yue,et al. Research on adaptive cutting control strategy of roadheader cutting arms[J]. China Mechanical Engineering,2022,33(20):2492-2501.

    [14] 周红旭,孙海军,张雷,等. 基于一维卷积神经网络的掘进机截割部磁场辅助定位技术[J]. 河北科技大学学报,2022,43(3):231-239.

    ZHOU Hongxu,SUN Haijun,ZHANG Lei,et al. Magnetic field aided positioning technology of roadheader cutting part based on one-dimensional convolution neural network[J]. Journal of Hebei University of Science and Technology,2022,43(3):231-239.

    [15] 李四维. 基于不同煤岩性质的矿井掘进机截割载荷分析研究[J]. 机械管理开发,2023,38(3):54-55,61.

    LI Siwei. Analysis of cut-off load of mine boring machine based on different coal rock properties[J]. Mechanical Management and Development,2023,38(3):54-55,61.

    [16] 柴博,李建辉. 不同性质煤岩下掘进机截割载荷研究[J]. 辽宁工程技术大学学报(自然科学版),2017,36(2):170-175.

    CHAI Bo,LI Jianhui. Study on roadheader cutting load at different properties of coal and rock[J]. Journal of Liaoning Technical University(Natural Science),2017,36(2):170-175.

    [17] 赵学雷. 基于多传感器信息融合的载荷及煤岩判定与识别技术研究[D]. 北京:中国矿业大学(北京),2011.

    ZHAO Xuelei. Research of identification of coal and rock and load torque observer of roadheader based on multi-sensor information fusion[D]. Beijing:China University of Mining and Technolog-Beijing,2011.

    [18] 张美晨,张凯,赵丽娟,等. 煤岩识别及采煤机自适应控制技术研究进展[J]. 山西焦煤科技,2023,47(12):4-10.

    ZHANG Meichen,ZHANG Kai,ZHAO Lijuan,et al. Research progress of coal and rock identification and adaptive control technology for shearer[J]. Shanxi Coking Coal Science & Technology,2023,47(12):4-10.

    [19] 王鑫,刘怡明,王明明,等. 基于改进模糊PID的轮式机器人速度控制器设计[J]. 河北科技大学学报,2020,41(1):50-57.

    WANG Xin,LIU Yiming,WANG Mingming,et al. Design of wheeled robot speed controller based on improved fuzzy PID[J]. Journal of Hebei University of Science and Technology,2020,41(1):50-57.

    [20] 张介夫. 纵轴掘进机自动截割成形和恒功率截割控制技术研究[D]. 哈尔滨:哈尔滨工业大学,2013.

    ZHANG Jiefu. Research on control system with automatic forming and constant power cutting of a longitudinal axis type roadheader[D]. Harbin:Harbin Institute of Technology,2013.

    [21] 何兴川. 悬臂式掘进机自动截割控制仿真研究[D]. 淮南:安徽理工大学,2022.

    HE Xingchuan. Simulation study on the automatic cutting control of boom-type roadheader[D]. Huainan:Anhui University of Science and Technology,2022.

图(16)  /  表(6)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  13
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 修回日期:  2025-01-05
  • 网络出版日期:  2024-10-31
  • 刊出日期:  2025-01-24

目录

    /

    返回文章
    返回