留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度局部直方图均衡化的矿井图像增强方法

涂毅晗 汪普庆

涂毅晗,汪普庆. 基于多尺度局部直方图均衡化的矿井图像增强方法[J]. 工矿自动化,2023,49(8):94-99.  doi: 10.13272/j.issn.1671-251x.2023010015
引用本文: 涂毅晗,汪普庆. 基于多尺度局部直方图均衡化的矿井图像增强方法[J]. 工矿自动化,2023,49(8):94-99.  doi: 10.13272/j.issn.1671-251x.2023010015
TU Yihan, WANG Puqing. Mine image enhancement method based on multi-scale local histogram equalization[J]. Journal of Mine Automation,2023,49(8):94-99.  doi: 10.13272/j.issn.1671-251x.2023010015
Citation: TU Yihan, WANG Puqing. Mine image enhancement method based on multi-scale local histogram equalization[J]. Journal of Mine Automation,2023,49(8):94-99.  doi: 10.13272/j.issn.1671-251x.2023010015

基于多尺度局部直方图均衡化的矿井图像增强方法

doi: 10.13272/j.issn.1671-251x.2023010015
基金项目: 江西省教育科学“十四五”规划课题(22YB369);江西省教育厅科学技术研究项目(GJJ212517);江西省教育科学“十三五”规划 2019年度课题(19YB266);江西省高等学校教学改革研究项目(JXJG-21-61-1)。
详细信息
    作者简介:

    涂毅晗(1980—),女,河南周口人,副教授,硕士,研究方向为图形图像处理和智能信息处理,E-mail:150093605@qq.com

  • 中图分类号: TD67

Mine image enhancement method based on multi-scale local histogram equalization

  • 摘要: 针对当前常用的直方图均衡化、基于Retinex理论、基于同态滤波、基于小波分析等矿井图像增强方法存在欠增强、过增强等问题,提出了一种基于多尺度局部直方图均衡化的矿井图像增强方法。根据HSI颜色空间图像的颜色分量(色调分量、饱和度分量)与亮度分量相互独立特性,将矿井低照度RGB图像转换到HSI颜色空间;采用双边滤波将亮度分量分解为光照图像和反射图像;对光照图像进行小、中、大3个尺度分块,对图像块分别进行局部直方图均衡化处理,以提升图像亮度和对比度;对反射图像进行8方向梯度增强,以丰富图像的纹理边缘;将经多尺度局部直方图均衡化的光照图像和方向梯度增强的反射图像进行Retinex反变换,得到增强的亮度分量,将其与色调分量和饱和度分量转换至RGB颜色空间,得到增强的矿井图像。采用煤矿井下实际监控图像对基于多尺度局部直方图均衡化的矿井图像增强方法进行实验验证,对其增强效果进行主客观评价。结果表明:该方法与现有图像增强方法相比,在图像亮度和对比度方面均有更大的提升,细节信息更丰富,信息熵提升7.23%以上,平均梯度均值提升31.6%以上,具有更好的图像增强效果。

     

  • 图  1  基于多尺度局部直方图均衡化的矿井图像增强流程

    Figure  1.  Flow of mine image enhancement based on multi-scale local histogram equalization

    图  2  高斯滤波与双边滤波效果

    Figure  2.  Effect of Gaussian filtering and Bilateral filtering

    图  3  方向梯度算子

    Figure  3.  Directional gradient operators

    图  4  矿井低照度图像

    Figure  4.  Mine low-light images

    图  5  不同方法对矿井低照度图像的增强效果

    Figure  5.  Enhancement effect of mine low-light images by different methods

    表  1  增强图像的信息熵

    Table  1.   Information entropy of enhanced images

    图像经不同方法增强的图像信息熵
    未增强文献[6]
    方法
    文献[8]
    方法
    文献[12]
    方法
    文献[13]
    方法
    本文
    方法
    16.857.547.647.597.687.93
    26.167.137.357.397.327.91
    35.846.646.917.016.967.74
    下载: 导出CSV

    表  2  增强图像的平均梯度

    Table  2.   Average gradient of enhanced images

    图像经不同方法增强的图像平均梯度
    未增强文献[6]
    方法
    文献[8]
    方法
    文献[12]
    方法
    文献[13]
    方法
    本文
    方法
    113.133.434.341.528.150.5
    29.7333.332.936.326.157.7
    35.9121.916.822.913.624.4
    下载: 导出CSV
  • [1] 程德强,郑珍,姜海龙. 一种煤矿井下图像增强算法[J]. 工矿自动化,2015,41(12):31-34. doi: 10.13272/j.issn.1671-251x.2015.12.009

    CHENG Deqiang,ZHENG Zhen,JIANG Hailong. An image enhancement algorithm for coal mine underground[J]. Industry and Mine Automation,2015,41(12):31-34. doi: 10.13272/j.issn.1671-251x.2015.12.009
    [2] CHENG Hong,LONG Wei,LI Yanan,et al. Two low illuminance image enhancement algorithms based on grey level mapping[J]. Multimedia Tools and Applications,2021,80(5):1-24.
    [3] GU Zhihao,LI Fang,FANG Faming,et al. A novel Retinex-based fractional-order variational model for images with severely low light[J]. IEEE Transactions on Image Processing,2019,29:3239-3253.
    [4] YUGANDER P,TEJASWINI C H,MEENAKSHI J. MR image enhancement using adaptive weighted mean filtering and homomorphic filtering[J]. Procedia Computer Science,2020,167:677-685. doi: 10.1016/j.procs.2020.03.334
    [5] 范凌云,梁修荣. 基于小波分解子带直方图匹配的矿井视频图像增强方法[J]. 金属矿山,2016(6):130-133.

    FAN Lingyun,LIANG Xiurong. Mine video images enhancement method based on the histogram matching method of the sub-bands of wavelet transform[J]. Metal Mine,2016(6):130-133.
    [6] TAN S F,MAT ISA N A. Exposure based multi-histogram equalization contrast enhancement for non-uniform illumination images[J]. IEEE Access,2019,7:70842-70861. doi: 10.1109/ACCESS.2019.2918557
    [7] SINGH D,KUMAR S. Infrared image enhancement using differential evolution based on double plateau histogram equalization[J]. Soft Computing for Problem Solving,2021,1392:757-770.
    [8] GUO Xiaojie,LI Yu,LING Haibin. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2017,26(2):982-993. doi: 10.1109/TIP.2016.2639450
    [9] 李晓宇,吕进来,郝晓丽. 一种改进的Retinex矿井图像增强算法[J]. 科学技术与工程,2020,20(29):12028-12034. doi: 10.3969/j.issn.1671-1815.2020.29.030

    LI Xiaoyu,LYU Jinlai,HAO Xiaoli. An improved enhancement algorithm of mine image based on Retinex[J]. Science Technology and Engineering,2020,20(29):12028-12034. doi: 10.3969/j.issn.1671-1815.2020.29.030
    [10] GUO Yanhui,KE Xue,MA Jie,et al. A pipeline neural network for low-light image enhancement[J]. IEEE Access,2019,7:13737-13744. doi: 10.1109/ACCESS.2019.2891957
    [11] 邵小强,杨涛,卫晋阳,等. 改进同态滤波的矿井监控视频图像增强算法[J]. 西安科技大学学报,2022,42(6):1205-1213. doi: 10.13800/j.cnki.xakjdxxb.2022.0619

    SHAO Xiaoqiang,YANG Tao,WEI Jinyang,et al. Image enhancement algorithm of mine surveillance video using improved homomorphic filtering[J]. Journal of Xi'an University of Science and Technology,2022,42(6):1205-1213. doi: 10.13800/j.cnki.xakjdxxb.2022.0619
    [12] 龚云, 颉昕宇. 一种改进同态滤波的井下图像增强算法[J/OL]. 煤炭科学技术: 1-8[2023-01-03]. 10.13199/j.cnki.cst.2021-0774">https://doi.org/ 10.13199/j.cnki.cst.2021-0774. DOI: 10.13199/j.cnki.cst.2021-0774.

    GONG Yun, XIE Xinyu. A downhole image enhancement algorithm based on improved homomorphic filtering[J/OL]. Coal Science and Technology: 1-8[2023-01-03]. 10.13199/j.cnki.cst.2021-0774">https://doi.org/ 10.13199/j.cnki.cst.2021-0774. DOI: 10.13199/j.cnki.cst.2021-0774.
    [13] 唐守锋,史可,仝光明,等. 一种矿井低照度图像增强算法[J]. 工矿自动化,2021,47(10):32-36.

    TANG Shoufeng,SHI Ke,TONG Guangming,et al. A mine low illumination image enhancement algorithm[J]. Industry and Mine Automation,2021,47(10):32-36.
    [14] KAMIYAMA M,TAGUCHI A. HSI color space with same gamut of RGB color space[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2017,E100-A(1):341-344. doi: 10.1587/transfun.E100.A.341
    [15] KAMIYAMA M,TAGUCHI A. Color conversion formula with saturation correction from HSI color space to RGB color space[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2021,E104-A(7):1000-1005. doi: 10.1587/transfun.2020EAL2087
    [16] JOBSON D,RAHMAN Z,WOODELL G. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing,1997,6(3):451-462. doi: 10.1109/83.557356
    [17] CHEN Bohao,TSENG Y S,YIN Jiali. Gaussian-adaptive bilateral filter[J]. IEEE Signal Processing Letters,2020,27:1670-1674. doi: 10.1109/LSP.2020.3024990
    [18] KRISHNA G,ARUNITA D,SWARNAJIT R,et al. Histogram equalization variants as optimization problems:a review[J]. Archives of Computational Methods in Engineering,2021,28(3):1471-1496. doi: 10.1007/s11831-020-09425-1
    [19] KAR M,RAVICHANDRAN G,ELANGOVAN P,et al. Analysis of diagnostic features from fundus image using multiscale wavelet decomposition[J]. ICIC Express Letters,2019,10(2):175-184.
    [20] CHEN Jiayi,ZHAN Yinwei,CAO Huiying. Adaptive sequentially weighted median filter for image highly corrupted by impulse noise[J]. IEEE Access,2019,7:158545-158556. doi: 10.1109/ACCESS.2019.2950348
    [21] 乔佳伟,贾运红. Retinex算法在煤矿井下图像增强的应用研究[J]. 煤炭技术,2022,41(3):193-195. doi: 10.13301/j.cnki.ct.2022.03.046

    QIAO Jiawei,JIA Yunhong. Research on application of Retinex algorithm in image enhancement in coal mine[J]. Coal Technology,2022,41(3):193-195. doi: 10.13301/j.cnki.ct.2022.03.046
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  49
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 修回日期:  2023-07-26
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回