液压锚杆钻车钻臂路径规划

赵欣悦, 翟博闻, 乔红兵, 李雨泽, 王东杰

赵欣悦,翟博闻,乔红兵,等. 液压锚杆钻车钻臂路径规划[J]. 工矿自动化,2023,49(3):70-76. DOI: 10.13272/j.issn.1671-251x.2022060055
引用本文: 赵欣悦,翟博闻,乔红兵,等. 液压锚杆钻车钻臂路径规划[J]. 工矿自动化,2023,49(3):70-76. DOI: 10.13272/j.issn.1671-251x.2022060055
ZHAO Xinyue, ZHAI Bowen, QIAO Hongbing, et al. Path planning of drilling arm of hydraulic bolt drilling rig[J]. Journal of Mine Automation,2023,49(3):70-76. DOI: 10.13272/j.issn.1671-251x.2022060055
Citation: ZHAO Xinyue, ZHAI Bowen, QIAO Hongbing, et al. Path planning of drilling arm of hydraulic bolt drilling rig[J]. Journal of Mine Automation,2023,49(3):70-76. DOI: 10.13272/j.issn.1671-251x.2022060055

液压锚杆钻车钻臂路径规划

基金项目: 国家自然科学基金项目(51874308)。
详细信息
    作者简介:

    赵欣悦(1996—),女,山东滨州人,硕士研究生,研究方向为机电一体化,E-mail:zhaozinyuezi@icloud.com

  • 中图分类号: TD353.6

Path planning of drilling arm of hydraulic bolt drilling rig

  • 摘要: 液压锚杆钻车作业时,需准确控制钻架钻头在工作空间中的朝向及其与巷道壁面之间的角度、距离等,对钻臂调整能力有极高要求。目前对液压锚杆钻车自动定位及自主路径规划的研究较少。针对上述问题,提出一种液压锚杆钻车钻臂路径规划方法。以CMM2−36型矿用液压锚杆钻车整机工作参数和钻臂结构为基础构建钻臂三维模型,在Matlab平台进行仿真模拟。采用连续路径规划方案,针对基于三次多项式插值法的钻臂关节角规划方法不能保证钻臂在始末位置的加速度为0的问题,采过五次多项式插值法对钻臂关节角进行规划。以巷道顶板为例,在顶板上设置32个钻孔定位点,设计了3种路径规划方案并进行对比分析,得出“工”字形路线距离最短,轨迹最合理。结合运动学理论构建D−H坐标系,对钻臂进行正逆运动学求解,采用蒙特卡罗法求解了液压锚杆钻车钻臂理论最大工作空间,以保证钻臂不会与巷道发生碰撞,从而保证工作安全性。仿真结果表明:在满足掘进巷道支护要求的前提下,液压锚杆钻车钻臂末端钻架能够实现自动定位及自主路径规划,且钻臂不会与巷道发生碰撞,能够保证工作安全性。
    Abstract: When the hydraulic bolt drilling rig is working, it is necessary to accurately control the orientation of the drilling bit in the working space and the angle and distance between the drilling bit and the roadway wall. It has very high requirements for the adjustment capability of the drilling arm. At present, there is little research on automatic positioning and autonomous path planning of hydraulic bolt drilling rig. In order to solve the above problems, a path planning method for the drilling arm of hydraulic bolt drilling rig is proposed. Based on the working parameters of the CMM2-36 mine hydraulic bolt drilling rig and the structure of the drilling arm, the 3D model of the drilling arm is built and simulated on the Matlab platform. The continuous path planning scheme is adopted. The joint angle planning method of the drilling arm based on the cubic polynomial interpolation method cannot guarantee the acceleration of the drilling arm at the beginning and end positions to be 0. In order to solve the above problems, the fifth polynomial interpolation method is adopted to plan the joint angle of the drilling arm. Taking the roadway roof as an example, 32 drilling positioning points are set on the roof. Three path planning schemes are designed and compared. It is concluded that the "工"-shaped path has the shortest distance and the most reasonable trajectory. The D-H coordinate system is constructed based on kinematics theory. The forward and inverse kinematics of the drilling arm is solved. The theoretical maximum workspace of the drilling arm of the hydraulic bolt drilling rig is solved by the Monte Carlo method. Therefore, the drilling arm will not collide with the roadway and the safety of the work is ensured. The simulation results show that on the premise of meeting the requirements of roadway support, the end drill frame of the drilling arm of the hydraulic bolt drilling rig can realize automatic positioning and independent path planning. And the drilljing arm will not collide with the roadway, which can ensure work safety.
  • 图  1   双臂型液压锚杆钻车结构

    Figure  1.   Structure of double-arm hydraulic bolt drilling rig

    图  2   液压锚杆钻车钻臂三维模型

    1−钻臂摆动油缸;2−钻臂升降油缸;3−钻臂升降补偿油缸;4−钻臂方筒伸缩机构;5−钻臂前后翻转机构;6−钻臂上下翻转机构。

    Figure  2.   Three-dimensional model of drilling arm of hydraulic bolt drilling rig

    图  3   第1种路径规划方案

    Figure  3.   The first path planning scheme

    图  4   第2种路径规划方案

    Figure  4.   The second path planning scheme

    图  5   第3种路径规划方案

    Figure  5.   The third path planning scheme

    图  6   左钻臂连杆坐标系

    Figure  6.   Link coordinate system of left drilling arm

    图  7   左钻臂正运动学仿真模型

    Figure  7.   Forward kinematics simulation model of left drilling arm

    图  8   钻臂工作空间散点图

    Figure  8.   Scatter diagram of drilling arm workspace

    图  9   巷道模型

    Figure  9.   Roadway model

    图  10   巷道顶板钻孔定位轨迹

    Figure  10.   Borehole positioning track in roadway roof

    图  11   巷道顶板单排钻孔分布

    Figure  11.   Distribution of single row of boreholes in roadway roof

    图  12   左钻臂末端钻架在XOZ平面内的运动轨迹

    Figure  12.   Movement track of drilling cramp at the end of the left drilling arm in the XOZ plane

    图  13   左钻臂末端钻架在XOY平面内的运动轨迹

    Figure  13.   Movement track of drilling cramp at the end of the left drilling arm in XOY plane

    图  14   左钻臂末端钻架位移

    Figure  14.   Displacement of drilling cramp at the end of the left drilling arm

    表  1   左钻臂改进D−H参数

    Table  1   Improved D-H parameters of left drilling arm

    连杆i关节角θi连杆转角αi-1连杆长度ai-1连杆偏距di
    1θ10a0d1
    2θ2−π/2a10
    3θ30a20
    40−π/20d4
    5θ500d5
    6θ6−π/200
    70π/2a6d7
    下载: 导出CSV
  • [1] 袁益,舒展. 中美能源安全现状比较与启示[J]. 中外能源,2019,24(2):1-14.

    YUAN Yi,SHU Zhan. Comparison of energy security of China and the US and the inspirations[J]. Sino-Global Energy,2019,24(2):1-14.

    [2] 李国清,王浩,侯杰,等. 地下金属矿山智能化技术进展[J]. 金属矿山,2021(11):1-12. DOI: 10.19614/j.cnki.jsks.202111001

    LI Guoqing,WANG Hao,HOU Jie,et al. Progress of intelligent technology in underground metal mines[J]. Metal Mine,2021(11):1-12. DOI: 10.19614/j.cnki.jsks.202111001

    [3] 王晓瑜. 浅谈国内外锚杆钻机现状与发展[J]. 机电一体化,2016,22(6):42-46. DOI: 10.16413/j.cnki.issn.1007-080x.2016.06.008

    WANG Xiaoyu. Discussion on the current status and development of jumbolter in domestic and overseas[J]. Mechatronics,2016,22(6):42-46. DOI: 10.16413/j.cnki.issn.1007-080x.2016.06.008

    [4] 兰君. 中国煤炭产业转型升级与空间布局优化研究[D]. 北京: 中国地质大学(北京), 2019.

    LAN Jun. Research on transformation and upgrading of China's coal industry and optimization of its spatial distribution[D]. Beijing: China University of Geosciences, Beijing, 2019.

    [5] 贺立军,鲍亮,刘银. 新型多功能锚杆钻机液压系统的设计[J]. 煤矿机械,2010,31(9):27-29. DOI: 10.3969/j.issn.1003-0794.2010.09.013

    HE Lijun,BAO Liang,LIU Yin. Design of new multi-functional roofbolter hydraulic system[J]. Coal Mine Machinery,2010,31(9):27-29. DOI: 10.3969/j.issn.1003-0794.2010.09.013

    [6] 郝雪弟,景新平,张中平,等. 机器人化钻锚车钻臂工作空间分析及轨迹规划[J]. 中南大学学报(自然科学版),2019,50(9):2128-2137. DOI: 10.11817/j.issn.1672-7207.2019.09.009

    HAO Xuedi,JING Xinping,ZHANG Zhongping,et al. Workspace analysis and trajectory planning of drill arm of roboticized bolting truck[J]. Journal of Central South University(Science and Technology),2019,50(9):2128-2137. DOI: 10.11817/j.issn.1672-7207.2019.09.009

    [7] 黄厚华. 履带式液压锚杆钻车关键结构及液压系统设计与研究[D]. 徐州: 中国矿业大学, 2019.

    HUANG Houhua. Design and research on key structure and hydraulic system of crawler hydraulic anchor drilling truck[D]. Xuzhou: China University of Mining and Technology, 2019.

    [8] 郭孝先. 煤矿钻爆法岩巷掘进机械化作业线的形成与发展[J]. 凿岩机械气动工具,2018(2):26-32. DOI: 10.19449/j.cnki.2095-6282.2018.02.004

    GUO Xiaoxian. Formation and development of mechanized rock drift excavation operation line using drilling-blasting method in coal mine[J]. Rock Drilling Machinery & Pneumatic Tools,2018(2):26-32. DOI: 10.19449/j.cnki.2095-6282.2018.02.004

    [9] 陈荣华. 凿岩机器人钻臂定位控制研究[D]. 赣州: 江西理工大学, 2017.

    CHEN Ronghua. Research on positioning control of rock drilling robot drilling boom[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    [10] 杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005. DOI: 10.13225/j.cnki.jccs.2019.1452

    YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005. DOI: 10.13225/j.cnki.jccs.2019.1452

    [11] 郭锐,石月,李永涛,等. 液压凿岩机器人机械臂轨迹规划研究[J]. 中国工程机械学报,2021,19(4):289-294. DOI: 10.15999/j.cnki.311926.2021.04.002

    GUO Rui,SHI Yue,LI Yongtao,et al. Research on trajectory planning of hydraulic rockdrilling robot manipulator[J]. Chinese Journal of Construction Machinery,2021,19(4):289-294. DOI: 10.15999/j.cnki.311926.2021.04.002

    [12] 徐扣. 六自由度机械臂的逆运动学求解与轨迹规划研究[D]. 广州: 广东工业大学, 2016.

    XU Kou. Inverse kinematics solution and trajectory planning of 6-DOF manipulator[D]. Guangzhou: Guangdong University of Technology, 2016.

    [13] 魏丽君,吴海波,刘海龙,等. 基于D−H算法的移动机械臂正运动学研究[J]. 计量与测试技术,2020,47(10):1-5. DOI: 10.15988/j.cnki.1004-6941.2020.10.001

    WEI Lijun,WU Haibo,LIU Hailong,et al. Research on trajectory planning of mobile manipulator based on improved gradient projection algorithm[J]. Metrology & Measurement Technique,2020,47(10):1-5. DOI: 10.15988/j.cnki.1004-6941.2020.10.001

    [14] 周友行,唐稳庄,张建勋. 基于运动轨迹的机器人运动学逆解研究[J]. 机械科学与技术,2009,28(7):862-866. DOI: 10.3321/j.issn:1003-8728.2009.07.005

    ZHOU Youhang,TANG Wenzhuang,ZHANG Jianxun. A study of the inverse kinematics of a multi-joint redundant robot based on its moving path[J]. Mechanical Science and Technology for Aerospace Engineering,2009,28(7):862-866. DOI: 10.3321/j.issn:1003-8728.2009.07.005

    [15] 薛忠健. 基于D−H法的锻造机器人运动学分析[J]. 机电工程技术,2020,49(11):40-42,128. DOI: 10.3969/j.issn.1009-9492.2020.11.010

    XUE Zhongjian. Kinematic analysis of forging robot based on D-H method[J]. Mechanical & Electrical Engineering Technology,2020,49(11):40-42,128. DOI: 10.3969/j.issn.1009-9492.2020.11.010

    [16] 朱庆浩. 六轴工业机器人运动规划研究[D]. 南京: 南京信息工程大学, 2021.

    ZHU Qinghao. Research on motion planning of six-axis industrial robot[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.

    [17]

    WANG Moran,LI Zhixin. Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method[J]. International Journal of Heat and Fluid Flow,2004,25(6):975-985. DOI: 10.1016/j.ijheatfluidflow.2004.02.024

    [18]

    ZHANG Jiaxin. Modern Monte Carlo methods for efficient uncertainty quantification and propagation: a survey[EB/OL]. [2022-05-21]. https://arxiv.org/abs/2011.00680.

    [19] 任军,李帅,王俊杰,等. 锚杆钻车钻臂工作空间分析及仿真[J]. 煤矿机械,2021,42(1):83-85. DOI: 10.13436/j.mkjx.202101027

    REN Jun,LI Shuai,WANG Junjie,et al. Analysis and simulation of working space of drill arm of anchor machine[J]. Coal Mine Machinery,2021,42(1):83-85. DOI: 10.13436/j.mkjx.202101027

    [20] 张思达. 基于ROS系统的机械臂轨迹规划与抓取[D]. 大连: 大连理工大学, 2021.

    ZHANG Sida. Trajectory planning and grasping of manipulator based on ROS[D]. Dalian: Dalian University of Technology, 2021.

    [21] 郑秀娟. 移动机械臂的运动控制与轨迹规划算法研究[D]. 武汉: 武汉科技大学, 2012.

    ZHENG Xiujuan. Research on motion control and trajectory planning algorithm for mobile manipulator[D]. Wuhan: Wuhan University of Science and Technology, 2012.

图(14)  /  表(1)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  88
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 修回日期:  2023-03-01
  • 网络出版日期:  2022-10-18
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回