留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向矿井无人驾驶的IMU与激光雷达融合SLAM技术

胡青松 李敬雯 张元生 李世银 孙彦景

胡青松,李敬雯,张元生,等. 面向矿井无人驾驶的IMU与激光雷达融合SLAM技术[J]. 工矿自动化,2024,50(10):21-28.  doi: 10.13272/j.issn.1671-251x.18209
引用本文: 胡青松,李敬雯,张元生,等. 面向矿井无人驾驶的IMU与激光雷达融合SLAM技术[J]. 工矿自动化,2024,50(10):21-28.  doi: 10.13272/j.issn.1671-251x.18209
HU Qingsong, LI Jingwen, ZHANG Yuansheng, et al. IMU-LiDAR integrated SLAM technology for unmanned driving in mines[J]. Journal of Mine Automation,2024,50(10):21-28.  doi: 10.13272/j.issn.1671-251x.18209
Citation: HU Qingsong, LI Jingwen, ZHANG Yuansheng, et al. IMU-LiDAR integrated SLAM technology for unmanned driving in mines[J]. Journal of Mine Automation,2024,50(10):21-28.  doi: 10.13272/j.issn.1671-251x.18209

面向矿井无人驾驶的IMU与激光雷达融合SLAM技术

doi: 10.13272/j.issn.1671-251x.18209
基金项目: 国家自然科学基金资助项目(52474185);矿冶过程智能优化制造全国重点实验室开放研究基金(BGRIMM-KZSKL-2023-1);“双一流”建设提升自主创新能力项目(2022ZZCX01K01)。
详细信息
    作者简介:

    胡青松(1978—),男,四川岳池人,教授,博士,博士研究生导师,研究方向为矿山智能化、矿山物联网和救灾通信,E-mail:hqsong722@163.com

  • 中图分类号: TD67

IMU-LiDAR integrated SLAM technology for unmanned driving in mines

  • 摘要: 同时定位与地图构建(SLAM)是无人驾驶关键技术,现有SLAM技术在煤矿巷道环境下存在累计误差大、漂移等问题。提出一种巷道环境特征辅助的惯性测量单元(IMU)与激光雷达融合SLAM算法。利用IMU观测数据预测点云运动状态并进行运动补偿,减少由设备运动引起的点云畸变;通过点云配准得到雷达里程计位姿变换信息,构成雷达里程计约束;提取巷道侧壁和地面点云并进行平面拟合,构成环境约束;基于IMU预积分约束、雷达里程计约束和环境约束,采用因子图优化方法完成激光雷达与IMU紧耦合,实现对巷道三维场景的高精度重建和无人驾驶车辆定位。仿真实验表明,巷道环境特征辅助的IMU与激光雷达融合SLAM算法的绝对轨迹均方根误差为0.116 2 m,相对轨迹均方根误差为0.040 9 m,定位精度较常用的LeGO−LOAM算法和LIO−SAM算法有所提升。真实环境测试结果表明,该算法具有良好的建图效果,未出现漂移和拖尾现象,具有较强的环境适应性和鲁棒性。

     

  • 图  1  IMU与激光雷达融合SLAM算法框架

    Figure  1.  Framework of simultaneous localization and mapping(SLAM) algorithm integrating inertial measurement unit(IMU) and LiDAR

    图  2  局部侧壁点云提取方法

    Figure  2.  Point cloud extraction method for roadway sidewalls

    图  3  因子图优化

    Figure  3.  Factor graph optimization

    图  4  部分仿真场景

    Figure  4.  Partial simulation scenarios

    图  5  点云数据可视化

    Figure  5.  Point cloud data visualization

    图  6  侧壁点云信息提取结果

    Figure  6.  Extraction results of sidewall point cloud information

    图  7  3种算法规划的三维轨迹对比

    Figure  7.  Comparison of 3D trajectories planned by three algorithms

    图  8  3种算法规划的二维轨迹对比

    Figure  8.  Comparisons of 2D trajectories planned by three algorithms

    图  9  3种算法规划的轨迹误差

    Figure  9.  Trajectory error planned by three algorithms

    图  10  真实环境测试场景

    Figure  10.  Test scenario in a real environment

    图  11  实验平台

    Figure  11.  Experimental platform

    图  12  3种算法在巷道环境中的建图效果

    Figure  12.  Mapping results of three algorithm in readway environment

    图  13  涵洞和地下车库测试场景

    Figure  13.  Test scenario in culvert and underground garage

    图  14  涵洞和地下车库场景中建图效果

    Figure  14.  Mapping effect in culvert and underground garage scenarios

    表  1  3种算法的绝对轨迹误差

    Table  1.   Absolute trajectory error (ATE) of three algorithms m

    指标 LeGO−LOAMS算法 LIO−SAM算法 本文算法
    均方根误差 3.2237 1.9166 0.1162
    平均值 1.4160 1.2771 0.1053
    中值 0.7579 0.5030 0.1052
    标准差 2.8961 1.4291 0.0495
    下载: 导出CSV

    表  2  3种算法的相对轨迹误差

    Table  2.   Relative pose error (RPE) of three algorithms m

    指标 LeGO−LOAM算法 LIO−SAM算法 本文算法
    均方根误差 1.4924 0.3303 0.0409
    平均值 0.3627 0.1236 0.0298
    中值 1.0193 0.2061 0.0254
    标准差 1.4476 0.3063 0.0283
    下载: 导出CSV
  • [1] 胡青松,孟春蕾,李世银,等. 矿井无人驾驶环境感知技术研究现状及展望[J]. 工矿自动化,2023,49(6):128-140.

    HU Qingsong,MENG Chunlei,LI Shiyin,et al. Research status and prospects of perception technology for unmanned mining vehicle driving environment[J]. Journal of Mine Automation,2023,49(6):128-140.
    [2] 陈善有,郭洋,田斌,等. 国内外露天矿山无人驾驶研究现状分析与发展前景[J]. 现代矿业,2023,39(12):12-16.

    CHEN Shanyou,GUO Yang,TIAN Bin,et al. Analysis of current research status and development prospects of unmanned driving in open-pit mines at home and abroad[J]. Modern Mining,2023,39(12):12-16.
    [3] 危双丰,庞帆,刘振彬,等. 基于激光雷达的同时定位与地图构建方法综述[J]. 计算机应用研究,2020,37(2):327-332.

    WEI Shuangfeng,PANG Fan,LIU Zhenbin,et al. Survey of LiDAR-based SLAM algorithm[J]. Application Research of Computers,2020,37(2):327-332.
    [4] 张新,徐建华,陈彤,等. 面向重大自然灾害的救援装备研究现状及发展趋势[J]. 科学技术与工程,2021,21(25):10552-10565. doi: 10.3969/j.issn.1671-1815.2021.25.002

    ZHANG Xin,XU Jianhua,CHEN Tong,et al. Research status and development trend of rescue equipment for major natural disasters[J]. Science Technology and Engineering,2021,21(25):10552-10565. doi: 10.3969/j.issn.1671-1815.2021.25.002
    [5] 蒋济州,徐文福,潘尔振. 仿生扑翼飞行机器人自主导航系统研究进展[J]. 仪器仪表学报,2023,44(11):66-84.

    JIANG Jizhou,XU Wenfu,PAN Erzhen. Survey on autonomous navigation systems of bionic flapping-wing flying robot[J]. Chinese Journal of Scientific Instrument,2023,44(11):66-84.
    [6] 周治国,曹江微,邸顺帆. 3D激光雷达SLAM算法综述[J]. 仪器仪表学报,2021,42(9):13-27.

    ZHOU Zhiguo,CAO Jiangwei,DI Shunfan. Overview of 3D lidar SLAM algorithms[J]. Chinese Journal of Scientific Instrument,2021,42(9):13-27.
    [7] 聂明炎,杨诚. 一种LiDAR平面配准方法辅助的IMU室内定位算法[J]. 测绘地理信息,2021,46(5):27-30.

    NIE Mingyan,YANG Cheng. An IMU indoor location algorithm assisted by LiDAR plane registration method[J]. Journal of Geomatics,2021,46(5):27-30.
    [8] ZHANG Ji,SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots,2017,41:401-416 . doi: 10.1007/s10514-016-9548-2
    [9] TANG Jian,CHEN Yuwei,NIU Xiaoji,et al. LiDAR scan matching aided inertial navigation system in GNSS-denied environments[J]. Sensors,2015,15(7):16710-16728. doi: 10.3390/s150716710
    [10] FRANK S A B D G. Tight coupling of laser scanner and inertial measurements for a fully autonomous relative navigation solution[J]. Navigation,2007,54(3):189-205. doi: 10.1002/j.2161-4296.2007.tb00404.x
    [11] 马艾强,姚顽强,蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J]. 工矿自动化,2022,48(12):49-56.

    MA Aiqiang,YAO Wanqiang,LIN Xiaohu,et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56.
    [12] 李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68-78.

    LI Menggang,HU Eryi,ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot[J]. Journal of Mine Automation,2022,48(12):68-78.
    [13] 杨林,马宏伟,王岩. 基于激光惯性融合的煤矿井下移动机器人SLAM算法[J]. 煤炭学报,2022,47(9):3523-3534.

    YANG Lin,MA Hongwei,WANG Yan. LiDAR-inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523-3534.
    [14] GENTIL C L,VIDAL-CALLEJA T,HUANG S. IN2LAMA:inertial lidar localisation and mapping[C]. International Conference on Robotics and Automation,Montreal,2019:6388-6394.
    [15] SHAN Tixiao,ENGLOT B,MEYERS D,et al. LIO-SAM:tightly-coupled lidar inertial odometry via smoothing and map[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas,2020:5135-5142.
    [16] RANGANATHAN A. The levenberg-marquardt algorithm[J]. Tutoral on LM Algorithm,2004,11(1):101-110.
    [17] DERPANIS K G. Overview of the RANSAC algorithm[J]. Image Rochester NY,2010,4(1):2-3.
    [18] LENG Zhixin,LI Shu,LI Xin,et al. An improved fast ground segmentation algorithm for 3D point cloud[C]. Chinese Control and Decision Conference,Hefei,2020:5016-5020.
    [19] SHAN Tixiao,ENGLOT B. LeGO-LOAM:lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018. DOI: 10.1109/IROS.2018.8594299.
    [20] 秦学斌,王炳,景宁波,等. 基于矿区巷道巡检机器人的LOAM-SLAM地图重建改进算法的研究[J]. 金属矿山,2022(4):163-168.

    QIN Xuebin,WANG Bing,JIN Ningbo,et al. Research on improved algorithm of LOAM-SLAM map reconstruction based on mine roadway inspection robot[J]. Metal Mine,2022(4):163-168.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  22
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 修回日期:  2024-10-16
  • 网络出版日期:  2024-11-11

目录

    /

    返回文章
    返回