小型化双向波束矿用定位终端天线设计

李烨, 金业勇

李烨,金业勇. 小型化双向波束矿用定位终端天线设计[J]. 工矿自动化,2024,50(11):127-131, 178. DOI: 10.13272/j.issn.1671-251x.2024080085
引用本文: 李烨,金业勇. 小型化双向波束矿用定位终端天线设计[J]. 工矿自动化,2024,50(11):127-131, 178. DOI: 10.13272/j.issn.1671-251x.2024080085
LI Ye, JIN Yeyong. Design of a miniaturized bidirectional beam mine positioning terminal antenna[J]. Journal of Mine Automation,2024,50(11):127-131, 178. DOI: 10.13272/j.issn.1671-251x.2024080085
Citation: LI Ye, JIN Yeyong. Design of a miniaturized bidirectional beam mine positioning terminal antenna[J]. Journal of Mine Automation,2024,50(11):127-131, 178. DOI: 10.13272/j.issn.1671-251x.2024080085

小型化双向波束矿用定位终端天线设计

基金项目: 江苏省科技成果转化专项基金项目(BA2022040 );天地(常州)自动化股份有限公司科研项目(2023TY4012)。
详细信息
    作者简介:

    李烨(1994—),男,江苏常州人,研究实习员,硕士,研究方向为电磁场与微波技术,E-mail:18206121105@163.com

  • 中图分类号: TD655.3

Design of a miniaturized bidirectional beam mine positioning terminal antenna

  • 摘要:

    双向天线可有效提高信号覆盖范围和天线耦合效率,削弱由巷道侧壁反射所带来的多径效应,适用于结构狭长、断面较小的煤矿井下巷道。针对现有双向天线尺寸大、增益低、带宽不满足井下UWB精确定位系统要求等问题,设计了一种小型化双向波束矿用定位终端天线。通过布置2个等幅同相U形单极子天线并在金属地板上引入U形槽结构,在保证天线整体结构紧凑的同时,实现了双向边射波束辐射特性。仿真和实测结果表明:天线的−10 dB带宽为1GHz(3.6~4.6 GHz),可有效覆盖煤矿井下UWB人员精确定位系统的工作频段(3.7~4.2 GHz);在3.6~4.6 GHz频段内,天线峰值增益为2.2~2.5 dBi,具有良好的幅频响应。

    Abstract:

    Bidirectional antennas can effectively improve signal coverage and antenna coupling efficiency, and weaken multipath effects caused by reflections from roadway sidewalls. These characteristics make them suitable for underground coal mine roadways with narrow structures and small cross-section. To address the problems of large size, low gain, and insufficient bandwidth of existing bidirectional antennas that do not meet the requirements of underground ultra-wide band (UWB) precise positioning systems, a miniaturized bidirectional beam mine positioning terminal antenna was designed. By arranging two equal-amplitude, in-phase U-shaped monopole antennas and introducing a U-shaped slot structure on the metal floor, the radiation characteristics of the bidirectional side-beam were realized while ensuring the compact structure of the antennas. Simulation and experimental results demonstrated that the antenna achieved a −10 dB bandwidth of 1 GHz (3.6-4.6 GHz), effectively covering the operational frequency band (3.7-4.2 GHz) of UWB personnel precise positioning systems in coal mines. Within the frequency band of 3.6-4.6 GHz, the antenna achieved a peak gain of 2.2-2.5 dBi, with good amplitude-frequency response.

  • 图  1   小型化双向波束矿用定位终端天线结构

    Figure  1.   Structure of the miniaturized bidirectional beam mine positioning terminal antenna

    图  2   各向同性点源直线阵布置

    Figure  2.   Layout of isotropic point source linear arrays

    图  3   天线设计过程

    Figure  3.   Antenna design process

    图  4   天线反射系数仿真结果

    Figure  4.   Simulation results of reflection coefficient of antenna

    图  5   天线II和III工作时表面电流分布

    Figure  5.   Surface current distribution of antennas II and III in operation

    图  6   天线3D远场辐射方向图

    Figure  6.   3D far-field radiation pattern of antenna

    图  7   天线2D远场辐射方向图

    Figure  7.   2D far-field radiation pattern of antenna

    图  8   天线峰值增益−频率结果

    Figure  8.   Result of peak gain over frequency

    图  9   天线实物

    Figure  9.   Actual antenna

    图  10   反射系数仿真与实测对比

    Figure  10.   Comparison between simulated and measured reflection coefficient

    图  11   2D远场辐射方向图仿真与实测对比

    Figure  11.   Comparison between simulated and measured 2D far-field radiation pattern

    图  12   峰值增益−频率仿真与实测结果对比

    Figure  12.   Comparison between simulated and measured peak gain over frequency

    表  1   天线尺寸参数

    Table  1   Antenna dimension parameters mm

    参数尺寸参数尺寸参数尺寸
    H10.45Wf10.36Ws10.5
    H20.2Wf20.6Ws21.88
    S111.5Wf30.36Wa11.48
    S25Ls15.5Wa20.7
    S38.6Ls25.75Wa31.2
    S44.75La15.5Wa42.7
    G125La25.7g0.4
    G225La33.05
    下载: 导出CSV
  • [1] 孙继平. 矿井人员位置监测技术[J]. 工矿自动化,2023,49(6):41-47.

    SUN Jiping. Mine personnel position monitoring technology[J]. Journal of Mine Automation,2023,49(6):41-47.

    [2] 李明锋,李䶮,刘用,等. 基于5G+UWB和惯导技术的井下人员定位系统[J]. 工矿自动化,2024,50(1):25-34.

    LI Mingfeng,LI Yan,LIU Yong,et al. Underground personnel positioning system based on 5G+UWB and inertial navigation technology[J]. Journal of Mine Automation,2024,50(1):25-34.

    [3] 杜春晖. 基于多技术融合的煤矿井下采掘运输设备防碰撞系统[J]. 煤炭学报,2020,45(增刊2):1060-1068.

    DU Chunhui. Anti-collision system of mining and transportation equipment in coal mine based on multi-technology integration[J]. Journal of China Coal Society,2020,45(S2):1060-1068.

    [4] 韩江洪,卫星,陆阳,等. 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报,2020,45(6):2104-2115.

    HAN Jianghong,WEI Xing,LU Yang,et al. Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society,2020,45(6):2104-2115.

    [5] 葛世荣,王世佳,曹波,等. 智能采运机组自主定位原理与技术[J]. 煤炭学报,2022,47(1):75-86.

    GE Shirong,WANG Shijia,CAO Bo,et al. Autonomous positioning principle and technology of intelligent shearer and conveyor[J]. Journal of China Coal Society,2022,47(1):75-86.

    [6] 刘超,符世琛,成龙,等. 基于TSOA定位原理混合算法的掘进机位姿检测方法[J]. 煤炭学报,2019,44(4):1255-1264.

    LIU Chao,FU Shichen,CHENG Long,et al. Pose detection method based on hybrid algorithm of TSOA positioning principle for roadheader[J]. Journal of China Coal Society,2019,44(4):1255-1264.

    [7] 韩梦辉,曹波,王世博,等. 矩形矿井巷道内UWB路径损耗研究[J]. 煤炭技术,2024,43(10):218-222.

    HAN Menghui,CAO Bo,WANG Shibo,et al. Study on UWB path loss in rectangular mine roadway[J]. Coal Technology,2024,43(10):218-222.

    [8]

    ZHOU Chenming,PLASS T,JACKSHA R,et al. RF propagation in mines and tunnels:extensive measurements for vertically,horizontally,and cross-polarized signals in mines and tunnels[J]. IEEE Antennas and Propagation Magazine,2015,57(4):88-102. DOI: 10.1109/MAP.2015.2453881

    [9] 霍羽,徐钊,刘逢雪. 融合波模和射线理论的矿井电波传播模型[J]. 电子学报,2013,41(1):110-116. DOI: 10.3969/j.issn.0372-2112.2013.01.020

    HUO Yu,XU Zhao,LIU Fengxue. A wave propagation model combined the modal theory and ray theory in coal mine tunnels[J]. Acta Electronica Sinica,2013,41(1):110-116. DOI: 10.3969/j.issn.0372-2112.2013.01.020

    [10] 霍羽,徐钊,郑红党. 矩形隧道中的多波模传播特性[J]. 电波科学学报,2010,25(6):1225-1230.

    HUO Yu,XU Zhao,ZHENG Hongdang. Characteristics of multimode propagation in rectangular tunnels[J]. Chinese Journal of Radio Science,2010,25(6):1225-1230.

    [11] 霍羽,刘逢雪,徐钊. 煤矿井巷天线位置对辐射场分布的影响[J]. 煤炭学报,2013,38(4):715-720.

    HUO Yu,LIU Fengxue,XU Zhao. Effect of antenna location on radiation field distribution in coal mine tunnels[J]. Journal of China Coal Society,2013,38(4):715-720.

    [12]

    GRAJEK P R,SCHOENLINNER B,REBEIZ G M. A 24-GHz high-gain Yagi-Uda antenna array[J]. IEEE Transactions on Antennas and Propagation,2004,52(5):1257-1261. DOI: 10.1109/TAP.2004.827543

    [13]

    ZHANG J,ZHANG X M,LIU J S,et al. Dual-band bidirectional high gain antenna for WLAN 2.4/5.8 GHz applications[J]. Electronics Letters,2009,45(1):6-7. DOI: 10.1049/el:20092617

    [14]

    CHEN S Y. Broadband slot-type Bruce array fed by a microstrip-to-slotline T-junction[J]. IEEE Antennas and Wireless Propagation Letters,2009,8:116-119. DOI: 10.1109/LAWP.2008.2012278

    [15]

    LIU Wendong,ZHANG Zhijun,TIAN Zijian,et al. A bidirectional high-gain cascaded ring antenna for communication in coal mine[J]. IEEE Antennas and Wireless Propagation Letters,2013,12:761-764. DOI: 10.1109/LAWP.2013.2270936

    [16]

    LIU Longsheng,ZHANG Zhijun,TIAN Zijian,et al. A bidirectional endfire array with compact antenna elements for coal mine/tunnel communication[J]. IEEE Antennas and Wireless Propagation Letters,2012,11:342-345. DOI: 10.1109/LAWP.2012.2191383

    [17]

    EUBANKS T W,CHANG Kai. A compact parallel-plane perpendicular-current feed for a modified equiangular spiral antenna[J]. IEEE Transactions on Antennas and Propagation,2010,58(7):2193-2202. DOI: 10.1109/TAP.2010.2048856

    [18]

    LI Yue,ZHANG Zhijun,CHEN Wenhua,et al. A dual-polarization slot antenna using a compact CPW feeding structure[J]. IEEE Antennas and Wireless Propagation Letters,2010,9:191-194. DOI: 10.1109/LAWP.2010.2044865

    [19]

    IWASAKI H. Microstrip antenna with back-to-back configuration relative to a slot on a ground plane[J]. Electronics Letters,1998,34(14):1373-1374. DOI: 10.1049/el:19980998

    [20] 李烨. 面向5G大规模MIMO天线阵的一体式滤波技术研究[D]. 苏州:苏州大学,2021.

    LI Ye. Research on integrated filtering technology for 5G massive MIMO antenna array[D]. Suzhou:Soochow University,2021.

    [21] 吕瑞杰. 煤矿井下UWB信号路径损耗测量及中心频率选择[J]. 工矿自动化,2023,49(4):147-152.

    LYU Ruijie. Measurement of UWB signal path loss and center frequency selection in underground coal mines[J]. Journal of Mine Automation,2023,49(4):147-152.

  • 期刊类型引用(7)

    1. 孙晓晋,杨帆,马惠雯,张建豪. 基于模型预测控制的无人矿车路径跟踪. 天津城建大学学报. 2024(05): 365-371 . 百度学术
    2. 杨凯,李姗姗. 大数据时代传统能源企业数字化转型实践研究. 商展经济. 2024(20): 144-147 . 百度学术
    3. 王瑜,曹大有. 虚拟现实场景图像点云大数据展示仿真. 计算机仿真. 2023(03): 228-231+353 . 百度学术
    4. 任志成,宋高峰,孔德中,许鹏飞. VR技术在煤矿安全管理的应用研究. 煤炭技术. 2023(11): 198-201 . 百度学术
    5. 鲍久圣,张可琨,王茂森,阴妍,杨磊,葛世荣. 矿山数字孪生MiDT:模型架构、关键技术及研究展望. 绿色矿山. 2023(01): 166-177 . 百度学术
    6. 程玮. 露天矿电铲高程智能引导系统. 露天采矿技术. 2022(01): 61-64 . 百度学术
    7. 刘增斌. 煤炭行业数字化转型路径研究. 煤炭经济研究. 2022(06): 58-63 . 百度学术

    其他类型引用(3)

图(12)  /  表(1)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  11
  • PDF下载量:  16
  • 被引次数: 10
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2024-11-24
  • 网络出版日期:  2024-10-28
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回