新一代信息技术在智能矿山中的研究与应用综述

江鹤, 程德强, 乙夫迪, 汪鹏, 崔文, 寇旗旗

江鹤,程德强,乙夫迪,等. 新一代信息技术在智能矿山中的研究与应用综述[J]. 工矿自动化,2024,50(11):1-16. DOI: 10.13272/j.issn.1671-251x.18225
引用本文: 江鹤,程德强,乙夫迪,等. 新一代信息技术在智能矿山中的研究与应用综述[J]. 工矿自动化,2024,50(11):1-16. DOI: 10.13272/j.issn.1671-251x.18225
JIANG He, CHENG Deqiang, YI Fudi, et al. Overview of research and applications of new generation information technologies in intelligent mines[J]. Journal of Mine Automation,2024,50(11):1-16. DOI: 10.13272/j.issn.1671-251x.18225
Citation: JIANG He, CHENG Deqiang, YI Fudi, et al. Overview of research and applications of new generation information technologies in intelligent mines[J]. Journal of Mine Automation,2024,50(11):1-16. DOI: 10.13272/j.issn.1671-251x.18225

新一代信息技术在智能矿山中的研究与应用综述

基金项目: 国家自然科学基金资助项目(52304182、52204177);安徽理工大学矿山精细探测与信息处理技术创新基地开放基金项目(2023MPIM03);国家重点研发计划项目 (2021YFC2902702,2023YFC2907604)。
详细信息
    作者简介:

    江鹤(1990—),男,江苏徐州人,讲师,博士,研究方向为图像修复与增强、检测与识别,E-mail:jianghe@cumt.edu.cn

    通讯作者:

    程德强(1979—),男,河南洛阳人,教授,博士,研究方向为图像智能检测与模式识别、图像处理与视频编码,E-mail:chengdq@cumt.edu.cn

  • 中图分类号: TD67

Overview of research and applications of new generation information technologies in intelligent mines

  • 摘要:

    随着信息技术的飞速发展及矿山智能化转型升级的需求加大,新一代信息技术在智能矿山领域的探索与应用持续深化。简述了矿山信息化、数字化及智能化的理论体系,其覆盖从数据采集、处理到智能决策的全方位流程,为矿山转型升级奠定基础。综述了智能矿山监测监控技术、矿山大数据智能分析与决策技术、矿用设备预测性维护技术、智能矿山工业物联网技术、智能矿山AI技术、矿山数字孪生技术、矿山机器人技术、矿山5G通信技术的核心关键技术、典型应用场景和未来发展趋势。智能矿山监测与监控技术的核心构成是高精度传感器网络、物联网、大数据分析及AI。矿山大数据智能分析与决策关键技术包括数据收集与整合、数据智能分析、决策支持等。矿用设备的预测性维护技术主要包括数据采集、数据分析、故障诊断及维护决策优化。智能矿山工业物联网技术贯穿感知层到应用层,实现矿山安全管理的高效化与智能化。智能矿山AI技术在预测性维护与自我优化、人机协作与自动化控制等领域具有巨大的应用潜力。矿山数字孪生技术的核心是物联网、三维可视化与建模、AI与机器学习和高可靠通信技术。矿山机器人技术在无人驾驶、智能采矿、环境感知与监测、多机器人协同作业等领域广泛应用。矿山5G技术的核心优势是高速率、低延迟、大连接密度、高可靠性与稳定性,在多传感器融合监测、无人驾驶、5G边缘计算、虚拟现实/增强显示等领域得以应用。

    Abstract:

    With the rapid development of information technology and the increasing demand for the intelligent transformation and upgrading of mining operations, the exploration and application of new generation information technologies in the field of intelligent mining have continued to deepen. This paper briefly describes the theoretical system of mine informatization, digitization, and intelligence, which covers the entire process from data collection and processing to intelligent decision-making, laying the foundation for the transformation and upgrading of mines. It reviews the core technologies, typical application scenarios, and future development trends of intelligent mine monitoring and control technologies, big data intelligent analysis and decision-making technologies, predictive maintenance technologies for mining equipment, industrial IoT technologies in intelligent mines, AI technologies in intelligent mining, digital twin technologies in mining, robotics in mining, and 5G communication technologies in mining. The core components of intelligent mine monitoring and control technology are high-precision sensor networks, the Internet of Things (IoT), big data analysis, and AI. Key technologies in big data intelligent analysis and decision-making for mines include data collection and integration, intelligent data analysis, and decision support. Predictive maintenance technologies for mining equipment mainly involve data collection, data analysis, fault diagnosis, and maintenance decision optimization. Industrial IoT technologies in intelligent mines span from the sensing layer to the application layer, achieving efficient and intelligent mine safety management. AI technologies in intelligent mines hold great application potential in predictive maintenance, self-optimization, human-machine collaboration, and automated control. The core of digital twin technology in mining includes IoT, 3D visualization and modeling, AI and machine learning, and high-reliability communication technologies. Robotics technology in mining is widely applied in fields such as autonomous driving, intelligent mining, environmental sensing and monitoring, and multi-robot collaborative operations. The core advantages of 5G technology in mining are high speed, low latency, large connection density, high reliability, and stability, which are applied in fields like multi-sensor fusion monitoring, autonomous driving, 5G edge computing, and virtual reality/augmented display.

  • 【编者按】近年来,云计算、大数据、物联网、人工智能、5G等新一代信息技术在矿山领域逐步深入应用,促使智能矿山建设加速,有效推动了行业提效增安、转型升级与高质量发展。2024年4月,国家矿山安监局等七部门发布《关于深入推进矿山智能化建设 促进矿山安全发展的指导意见》,指出我国矿山智能化建设仍存在发展不平衡、不充分、不协调等问题,要突破关键技术,推进工业互联网、人工智能、数字孪生等新技术与传统矿山开采融合应用。为总结交流科研成果,进一步推动智能矿山领域基础理论与关键技术研究与应用,助力矿山智能化建设和行业高质量发展,《工矿自动化》编辑部特邀中国矿业大学程德强教授担任客座主编,中煤科工集团常州研究院有限公司贺耀宜研究员为客座副主编,于2024年第11期组织出版“新一代信息技术在智能矿山中研究与应用”专题。在专题刊出之际,衷心感谢各位专家学者的大力支持!
  • 图  1   5G云网融合智慧矿山部署方案

    Figure  1.   5G cloud network integration smart mine deployment scheme

    图  2   矿山智能监控系统界面

    Figure  2.   Interface of intelligent mine monitoring system

    图  3   基于物联网的矿山设备互联

    Figure  3.   Mine equipment connection based on Internet of things

    图  4   露天矿山全景智能监控

    Figure  4.   Intelligent panoramic monitoring for open pit mine

    图  5   智能矿山工业物联网云、边、端架构

    Figure  5.   Industrial iot cloud, edge and end architecture

    图  6   智能矿山监控管理中心

    Figure  6.   Intelligent mine monitoring management center

    图  7   无人驾驶矿车

    Figure  7.   Driverless mine vehicle

    图  8   人机协作交互平台

    Figure  8.   Human-machine collaboration and interaction platform

    图  9   矿山三维可视化建模

    Figure  9.   Three-dimensional visualization modeling of mine

    图  10   矿山无人驾驶系统原理

    Figure  10.   Principle of mine unmanned driving system

    图  11   煤矿巡检机器人

    Figure  11.   Coal mine inspection robot

  • [1] 康桂芳. 集聚数字生态赋能智能矿山[N]. 吕梁日报,2024-09-28(002).

    KANG Guifang. Gathering digital ecology to empower Intelligent mines[N]. Luliang Daily,2024-09-28(002).

    [2] 余洋,张申. 智能矿山基础平台建设及其发展趋势[J]. 工矿自动化,2023,49(9):13-22,121.

    YU Yang,ZHANG Shen. Construction and development trends of intelligent mining basic platform[J]. Journal of Mine Automation,2023,49(9):13-22,121.

    [3] 邢震. 智能矿山综合管控平台研究进展及发展路径[J]. 工矿自动化,2023,49(9):147-154.

    XING Zhen. Research progress and development path of intelligent mining comprehensive control platform[J]. Journal of Mine Automation,2023,49(9):147-154.

    [4] 吴立新,殷作如,钟亚平. 再论数字矿山:特征、框架与关键技术[J]. 煤炭学报,2003,28(1):1-7.

    WU Lixin,YIN Zuoru,ZHONG Yaping. Restudy on digital mine:characteristics,framework and key technologies[J]. Journal of China Coal Society,2003,28(1):1-7.

    [5] 程恩旺,杨芳震. 5G助力智慧矿山数字化转型[J]. 通信世界,2022(6):45-46.

    CHENG Enwang,YANG Fangzhen. 5G helps digital transformation of smart mines[J]. Communications World,2022(6):45-46.

    [6] 张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176.

    ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176.

    [7] 翟桂武,潘涛. 煤矿智能生产管理系统的研究与实践[J]. 煤炭学报,2014,39(8):1530-1538.

    ZHAI Guiwu,PAN Tao. Research and application of coal mine intelligent production management system[J]. Journal of China Coal Society,2014,39(8):1530-1538.

    [8] 吴群英,蒋林,王国法,等. 智慧矿山顶层架构设计及其关键技术[J]. 煤炭科学技术,2020,48(7):80-91.

    WU Qunying,JIANG Lin,WANG Guofa,et al. Top-level architecture design and key technologies of smart mine[J]. Coal Science and Technology,2020,48(7):80-91.

    [9] 徐静,谭章禄. 智慧矿山系统工程与关键技术探讨[J]. 煤炭科学技术,2014,42(4):79-82.

    XU Jing,TAN Zhanglu. Smart mine system engineering and discussion of its key technology[J]. Coal Science and Technology,2014,42(4):79-82.

    [10] 程德强,李世银,李鹏,等. 矿井安全监测监控系统[J]. 电视技术,2006,30(2):78-81.

    CHENG Deqiang,LI Shiyin,LI Peng,et al. The safety monitoring control system of coal mine[J]. Video Engineering,2006,30(2):78-81.

    [11] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.

    [12] 黄启战. 可持续发展理念在矿山企业中的运用——评《废物资源综合利用技术丛书——尾矿和废石综合利用技术》[J]. 矿业研究与开发,2020,40(1):165.

    HUANG Qizhan. The application of the concept of sustainable development in mining enterprises-comment on "technical series of comprehensive utilization of waste resources-comprehensive utilization technology of tailings and waste rock"[J]. Mining Research and Development,2020,40(1):165.

    [13] 曾现来,李金惠. 城市矿山开发及其资源调控:特征、可持续性和开发机理[J]. 中国科学:地球科学,2018,48(3):288-298. DOI: 10.1360/N072017-00255

    ZENG Xianlai,LI Jinhui. Urban mining and its resources control:characteristics,sustainability,and extraction mechanism[J]. Scientia Sinica (Terrae),2018,48(3):288-298. DOI: 10.1360/N072017-00255

    [14] 刘建兴. 绿色矿山的概念内涵及其系统构成研究[J]. 中国矿业,2014,23(2):51-54.

    LIU Jianxing. The connotation of green mine and it's system structure[J]. China Mining Magazine,2014,23(2):51-54.

    [15] 刘志明,金刚,杜波,等. 传感器在煤矿生产中的应用研究及展望[J]. 煤矿机械,2023,44(5):159-161.

    LIU Zhiming,JIN Gang,DU Bo,et al. Research and prospect of application of sensor in coal mine[J]. Coal Mine Machinery,2023,44(5):159-161.

    [16] 贺耀宜,刘丽静,赵立厂,等. 基于工业物联网的智能矿山基础信息采集关键技术与平台[J]. 工矿自动化,2021,47(6):17-24.

    HE Yaoyi,LIU Lijing,ZHAO Lichang,et al. Key technology and platform of intelligent mine basic information acquisition based on industrial Internet of Things[J]. Industry and Mine Automation,2021,47(6):17-24.

    [17] 彭康,郭宏扬,尚雪义. 基于Log−Cosh函数及剔除远距离传感器P波到时的矿山微震震源定位方法(英文)[J]. Journal of Central South University,2022,29(2):712-725. DOI: 10.1007/s11771-022-4943-7

    PENG Kang,GUO Hongyang,SHANG Xueyi. Microseismic source location using the Log-Cosh function and distant sensor-removed P-wave arrival data[J]. Journal of Central South University,2022,29(2):712-725. DOI: 10.1007/s11771-022-4943-7

    [18] 杜博文,杜彦良,徐飞,等. 基于数据互联服务的隧道新奥法施工构想与初探[J]. Engineering,2018,4(1):265-280.

    DU Bowen,DU Yanliang,XU Fei,et al. Conceptualization and preliminary exploration of tunnel neoarcheological construction based on data interconnection service[J]. Engineering,2018,4(1):265-280.

    [19] 王忠鑫,田会,王东,等. 露天采矿科学目标的演变与未来发展趋势[J]. 煤炭学报,2024,49(增刊1):129-153.

    WANG Zhongxin,TIAN Hui,WANG Dong,et al. Evolution and future prospect of scientific objectives of open-pit mining[J]. Journal of China Coal Society,2024,49(S1):129-153.

    [20]

    MA Long,CHEN Qing. Design and application of intelligent monitoring and identification system in coal mine[J]. IOP Conference Series:Earth and Environmental Science,2021,651(3). DOI: 10.1088/1755-1315/651/3/032107.

    [21] 顾清华,江松,李学现,等. 人工智能背景下采矿系统工程发展现状与展望[J]. 金属矿山,2022(5):10-25.

    GU Qinghua,JIANG Song,LI Xuexian,et al. Current status and prospect of mining system engineering development in the context of artificial intelligence[J]. Metal Mining,2022(5):10-25.

    [22]

    GUO Jun,GAN Deqing,TAN Jing,et al. Mine detection technology in mine safe production[J]. Applied Mechanics and Materials,2012,214:558-561. DOI: 10.4028/www.scientific.net/AMM.214.558

    [23] 阙建立. 智能矿山平台建设与实现[J]. 工矿自动化,2018,44(4):90-94.

    QUE Jianli. Construction and implementation of platform for intelligent mine[J]. Industry and Mine Automation,2018,44(4):90-94.

    [24] 高士岗,高登彦,欧阳一博,等. 煤矿智能一体化辅助生产系统及关键技术[J]. 煤炭科学技术,2020,48(7):150-160.

    GAO Shigang,GAO Dengyan,OUYANG Yibo,et al. Mine intelligent integrated auxiliary production system and key technologies[J]. Coal Science and Technology,2020,48(7):150-160.

    [25] 程德强,寇旗旗,江鹤,等. 全矿井智能视频分析关键技术综述[J]. 工矿自动化,2023,49(11):1-21.

    CHENG Deqiang,KOU Qiqi,JIANG He,et al. Overview of key technologies for mine-wide intelligent video analysis[J]. Journal of Mine Automation,2023,49(11):1-21.

    [26] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.

    [27] 陈杰. 智慧矿山安全防控多系统井下融合与应急联动技术研究[J]. 煤矿安全,2022,53(5):99-105.

    CHEN Jie. Research on multi-system underground integration and emergency linkage technology for smart mine safety prevention and control[J]. Safety in Coal Mines,2022,53(5):99-105.

    [28] 张靖. 智能矿山综合管控平台的三维模型界面设计及应用[J]. 煤田地质与勘探,2023,51(6):85-91.

    ZHANG Jing. Design and application of three-dimensional model interface of intelligent mine comprehensivecontrol platform[J]. Coalfield Geology and Exploration,2023,51(6):85-91.

    [29] 李维欣,冯建亮. 基于大数据分析的矿山地质灾害监测预警平台设计[J]. 中国金属通报,2024(7):85-87.

    LI Weixin,FENG Jianliang. Design of mine geological disaster monitoring and early warning platform based on big data analysis[J]. China Metal Bulletin,2024(7):85-87.

    [30] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.

    [31] 高志广,傅健. 采煤机制动器预测性维护总体设计[J]. 内蒙古煤炭经济,2024(15):39-41.

    GAO Zhiguang,FU Jian. Coal winning machine brake predictive maintenance overall design[J]. Journal of Inner Mongolia coal economy,2024(15):39-41.

    [32] 朱黎阳,王国文. 浅谈预测性维护技术在选矿厂的应用[J]. 矿山机械,2022,50(6):77-79.

    ZHU Liyang,WANG Guowen. Discussion on application of predictive maintenance technology in concentrator[J]. Mining & Processing Equipment,2022,50(6):77-79.

    [33] 褚润涛. 煤炭机电设备故障诊断与预测性维护研究与实践[J]. 中国高新科技,2024(7):78-79,117.

    CHU Runtao. Research and practice of fault diagnosis and predictive maintenance of coal mechanical and electrical equipment[J]. China High-Tech,2024(7):78-79,117.

    [34] 庞亮. 马兰矿选煤厂典型设备在线远程智能预测性维护系统的应用[J]. 煤炭加工与综合利用,2019(12):19-22.

    PANG Liang. Application of typical equipment online remote intelligent predictive maintenance system in Malan Coal Preparation Plant[J]. Coal Processing & Comprehensive Utilization,2019(12):19-22.

    [35] 刘海强. 分布式压缩感知及其在煤矿监控信源编码中的研究与应用[D]. 徐州:中国矿业大学,2018.

    LIU Haiqiang. Research and application of distributed compressive sensing and its source coding in coal mine monitoring[D]. Xuzhou:China University of Mining and Technology,2018.

    [36] 樊红卫,张旭辉,曹现刚,等. 智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J]. 振动与冲击,2020,39(24):194-204.

    FAN Hongwei,ZHANG Xuhui,CAO Xiangang,et al. Research status and prospect of fault diagnosis of China's coal mine machines under background of intelligent mine[J]. Journal of Vibration and Shock,2020,39(24):194-204.

    [37] 屈梁生,张西宁,沈玉娣. 机械故障诊断理论与方法[M]. 西安:西安交通大学出版社,2009.

    QU Liangsheng,ZHANG Xining,SHEN Yudi. Theory and method of mechanical fault diagnosis[M]. Xi'an:Xi'an Jiaotong University Press,2009.

    [38] 韩迎春. 矿山安全与应急管理的相关决策优化分析[J]. 内蒙古煤炭经济,2020(24):118-119.

    HAN Yingchun. Optimization analysis of relevant decisions on mine safety and emergency management[J]. Inner Mongolia Coal Economy,2020(24):118-119.

    [39] 康世龙,杜中一,雷咏梅,等. 工业物联网研究概述[J]. 物联网技术,2013,3(6):80-82,85.

    KANG Shilong,DU Zhongyi,LEI Yongmei,et al. Overview of industrial Internet of things[J]. Internet of Things Technologies,2013,3(6):80-82,85.

    [40] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83.

    SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19-23,83.

    [41] 工业互联网产业联盟. 工业互联网体系架构(版本1.0)[EB/OL]. [2024-09-15]. https://www.aii-alliance.org/resource/c331/n100.html.

    Alliance of Industrial Internet. Industrial Internet architecture(version 1.0)[EB/OL]. [2024-09-15]. https://www.aii-alliance.org/resource/c331/n100.html.

    [42] 董彦强,程德强,张云鹤,等. 基于注意力和重构特征融合的轻量级煤矿安全帽检测方法[J]. 计算机工程与应用,2024,60(15):297-306.

    DONG Yanqiang,CHENG Deqiang,ZHANG Yunhe,et al. Lightweight coal mine safety helmet detection method based on attention and reconstruction feature fusion[J]. Computer Engineering and Applications,2024,60(15):297-306.

    [43] 程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.

    CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.

    [44] 张兵,杨雪花. 基于机器视觉的运煤车车号识别技术研究[J]. 煤炭科技,2020,41(1):35-38.

    ZHANG Bing,YANG Xuehua. Research on recognition technology of coal car number based on machine vision[J]. Coal Science & Technology Magazine,2020,41(1):35-38.

    [45] 熊鑫. 物联制造车间人机协作关键技术研究[D]. 南京:南京航空航天大学,2022.

    XIONG Xin. Research on key technologies of man-machine cooperation in IOT manufacturing workshop[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2022.

    [46] 邢震. 面向智能矿山的数字孪生技术研究进展[J]. 工矿自动化,2024,50(3):22-34,41.

    XING Zhen. Research progress on digital twin technology for intelligent mines[J]. Journal of Mine Automation,2024,50(3):22-34,41.

    [47] 周福宝,时国庆,王雁鸣,等. 矿井密闭全生命周期安全风险监测预警[J]. 工矿自动化,2023,49(6):48-56.

    ZHOU Fubao,SHI Guoqing,WANG Yanming,et al. Safety risks monitoring and warning throughout the full lifecycle of mine air stopping[J]. Journal of Mine Automation,2023,49(6):48-56.

    [48]

    WANG Hongwei,WANG Zeliang,JIANG Yaodong,et al. New approach for the digital reconstruction of complex mine faults and its application in mining[J]. International Journal of Coal Science & Technology,2022,9(1). DOI: 10.1007/S40789-022-00506-Z.

    [49] 张旭辉,张雨萌,王岩,等. 融合数字孪生与混合现实技术的机电设备辅助维修方法[J]. 计算机集成制造系统,2021,27(8):2187-2195.

    ZHANG Xuhui,ZHANG Yumeng,WANG Yan,et al. Auxiliary maintenance method for electromechanical equipment integrating digital twin and mixed reality technology[J]. Computer Integrated Manufacturing Systems,2021,27(8):2187-2195.

    [50] 张雨萌. 数字孪生驱动的矿用设备维修MR辅助指导系统[D]. 西安:西安科技大学,2020.

    ZHANG Yumeng. Digital twin-driven MR auxiliary guidance system for mine equipment maintenance[D]. Xi'an:Xi'an University of Science and Technology,2020.

    [51] 王国法,庞义辉,李爽,等. 基于煤矿时空多源信息感知的智能安控闭环体系[J]. 矿业安全与环保,2022,49(4):1-11.

    WANG Guofa,PANG Yihui,LI Shuang,et al. Intelligent safety closed-loop management and control system based on multi-source information perception in coal mine[J]. Mining Safety & Environmental Protection,2022,49(4):1-11.

    [52] 王佳奇,卢明银. 基于数字孪生的煤矿瓦斯事故安全管理[J]. 煤矿安全,2020,51(8):251-255.

    WANG Jiaqi,LU Mingyin. Mine gas accident safety management based on digital twin[J]. Safety in Coal Mines,2020,51(8):251-255.

    [53]

    SEMENOV Y,SEMENOVA O,KUVATAEV I. Solutions for digitalization of the coal industry implemented in UC Kuzbassrazrezugol[J]. E3S Web of Conferences,2020,174. DOI: 10.1051/e3sconf/202017401042.

    [54] 杨林,马宏伟,王岩,等. 煤矿巡检机器人同步定位与地图构建方法研究[J]. 工矿自动化,2019,45(9):18-24.

    YANG Lin,MA Hongwei,WANG Yan,et al. Research on method of simultaneous localization and mapping of coal mine inspection robot[J]. Industry and Mine Automation,2019,45(9):18-24.

    [55] 马超. 5G移动通信助力煤矿智慧矿山建设的研究与应用[J]. 长江信息通信,2023,36(1):219-221.

    MA Chao. Research and application of 5G mobile communication to assist the construction of coal mine smart mine[J]. Yangtze River Information and Communication,2023,36(1):219-221.

    [56] 程德强,陈杰,寇旗旗,等. 融合层次特征和注意力机制的轻量化矿井图像超分辨率重建方法[J]. 仪器仪表学报,2022,43(8):73-84.

    CHENG Deqiang,CHEN Jie,KOU Qiqi,et al. Lightweight super-resolution reconstruction method based on hierarchical features fusion and attention mechanism for mine image[J]. Chinese Journal of Scientific Instrument,2022,43(8):73-84.

    [57]

    ZHU Daixian,SUN Xiaoting,LIU Shulin,et al. A SLAM method to improve the safety performance of mine robot[J]. Safety Science,2019,120:422-427. DOI: 10.1016/j.ssci.2019.07.015

    [58]

    KIRUBAKARAN S J J,KUMAR JHA A,KUMAR D,et al. Mine detecting robot with multi sensors controlled using HC-12 module[J]. International Journal of Engineering & Technology,2018,7(2.24). DOI: 10.14419/ijet.v7i2.24.12050.

    [59] 江新奇,刘敬玉,李忠飞,等. 煤矿巡检机器人智能传感与控制系统设计研究[J]. 煤炭工程,2022,54(1):171-175.

    JIANG Xinqi,LIU Jingyu,LI Zhongfei,el al. Design of intelligent sensing and control system of coal mine inspection robot[J]. Coal Engineering,2022,54(1):171-175.

    [60] 张含阳. 人机协作:下一代机器人的必然属性[J]. 机器人产业,2016(3):37-45.

    ZHANG Hanyang. Man-machine cooperation:the inevitable attribute of the next generation robot[J]. Robot Industry,2016(3):37-45.

    [61] 赖一楠,叶鑫,丁汉. 共融机器人重大研究计划研究进展[J]. 机械工程学报,2021,57(23):1-11,20. DOI: 10.3901/JME.2021.23.001

    LAI Yinan,YE Xin,DING Han. Research progress of major research plan on tri-co robots[J]. Journal of Mechanical Engineering,2021,57(23):1-11,20. DOI: 10.3901/JME.2021.23.001

    [62] 陈杰,辛斌. 有人/无人系统自主协同的关键科学问题[J]. 中国科学:信息科学,2018,48(9):1270-1274.

    CHEN Jie,XIN Bin. Key scientific issues of autonomous collaboration of manned/unmanned systems[J]. Science in China:Information Science,2018,48(9):1270-1274.

    [63] 范京道,李川,闫振国. 融合5G技术生态的智能煤矿总体架构及核心场景[J]. 煤炭学报,2020,45(6):1949-1958.

    FAN Jingdao,LI Chuan,YAN Zhenguo. Overall architecture and core scenario of a smart coal mine in-corporating 5G technology ecology[J]. Journal of China Coal Society,2020,45(6):1949-1958.

    [64] 王博翰. 5G通信网络技术助力矿井智能化发展的研究[J]. 西部探矿工程,2024,36(10):150-153.

    WANG Bohan. Research on 5G communication network technology to help mine intelligent development[J]. West-China Exploration Engineering,2024,36(10):150-153.

    [65] 柳东林,任志刚,王鹏,等. 工业5G蜂窝无线技术在智慧矿山的应用[J]. 装备制造技术,2022(8):29-33.

    LIU Donglin,REN Zhigang,WANG Peng,et al. Application of industrial 5G cellular wireless technology in smart mines[J]. Equipment Manufacturing Technology,2022(8):29-33.

    [66] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.

    [67]

    WU Yuliang,WU Chao,WANG Jun,et al. A mobile intelligent mine platform with a hybrid fuzzy NN and ATT-CNN prewarning model[J]. Wireless Communications and Mobile Computing,2022. DOI: 10.1155/2022/4545936.

    [68] 阎俊豪,贾宗璞,李东印. 智能矿山车联网体系架构与关键技术[J]. 煤炭科学技术,2020,48(7):249-254.

    YAN Junhao,JIA Zongpu,LI Dongyin. Architecture and key technologies of intelligent of vehicles in intelligent mine[J]. Coal Science and Technology,2020,48(7):249-254.

    [69] 李晨鑫,胡金玲,赵锐,等. 车联网定位技术现状及展望[J]. 移动通信,2020,44(11):70-75.

    LI Chenxin,HU Jinling,ZHAO Rui,et al. V2X positioning technologies:the state of the art and perspective[J]. Mobile Communications,2020,44(11):70-75.

    [70] 陈刚,孔德超,谷金龙,等. AI边缘计算技术推动万物智能时代的到来[J]. 人工智能,2019,6(5):6-17.

    CHEN Gang,KONG Dechao,GU Jinlong,et al. AI edge computing technology promotes the arrival of the era of all things intelligence[J]. AI-View,2019,6(5):6-17.

图(11)
计量
  • 文章访问数:  729
  • HTML全文浏览量:  63
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-10
  • 修回日期:  2024-11-10
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回