Summary of research on health status assessment of fully mechanized mining equipment
-
摘要: 综采设备逐渐趋于大型化、复杂化、智能化,定期维修与事后维修等传统设备管理模式已难以满足煤矿智能化建设对设备运行的高可靠性需求。因此,研究综采设备健康状态评估相关理论及技术对煤矿智能开采技术发展意义重大。给出了综采设备健康状态评估范畴界定及综采设备健康状态评估流程。从综采设备信号获取、特征提取及融合、健康状态等级划分、健康状态评估模型建立4个方面总结了综采设备健康状态评估方法的研究现状和发展动态。分别从综采设备信号获取及传感器优化布置、数据处理及特征提取、健康状态评估模型建立、综采设备状态评估应用等方面分析了综采设备健康状态评估相关技术目前面临的挑战。针对上述研究现状及面临的挑战,从数据采集方案及故障机理研究手段提升、大数据高性能计算平台建设、深度学习评估模型建立、综采设备健康状态动态评估模型研究、综采设备健康状态评估系统开发等方面探讨了综采设备健康状态评估技术的发展趋势,指出在煤矿智能化进程中,需确保综采设备健康状态评估理论研究、算法开发和工程应用三线齐头并进。Abstract: Fully mechanized mining equipment is gradually becoming larger, more complex and more intelligent. The traditional equipment management methods of regular maintenance and post maintenance are no longer able to meet the high reliability requirements of equipment operation in coal mine intelligent construction. Therefore, studying the relevant theories and technologies of fully mechanized equipment health status assessment has great practical significance for coal mine intelligent mining. This paper proposes the scope definition of fully mechanized mining equipment health status assessment and the fully mechanized mining equipment health status assessment process. This paper summarizes the research status and development trends of comprehensive mining equipment health status assessment methods from four aspects: signal acquisition, feature extraction and fusion, health status level classification, and health status assessment model establishment. The current challenges faced by fully mechanized mining equipment health status assessment related technologies are analyzed from aspects such as signal acquisition and sensor optimization layout, data processing and feature extraction, establishment of health status assessment models, and application of fully mechanized mining equipment status assessment. In response to the current research status and challenges mentioned above, the development trend of fully mechanized mining equipment health status assessment technology is discussed from the aspects of improving data collection schemes and fault mechanism research methods, building high-performance big data computing platforms, establishing deep learning assessment models, researching dynamic evaluation models for fully mechanized mining equipment health status, and developing fully mechanized mining equipment health status assessment systems. It is pointed out that in the process of coal mine intelligence, it is necessary to ensure that the theoretical research, algorithm development, and engineering application of fully mechanized mining equipment health status assessment go hand in hand.
-
0. 引言
为提高矿山安全生产保障能力,国家要求全国煤矿及非煤矿山建立和完善监测监控、人员定位、供水施救、压风自救、通信联络及紧急避险等井下安全避险“六大系统”[1]。其中,井下人员定位系统在遏制井下超定员生产、防止人员进入危险区域、及时发现未按时升井人员、加强特种作业人员管理、加强干部带班管理、实现煤矿井下作业人员考勤管理等工作中发挥着重要作用[2-4]。同时,井下车辆精确定位是矿井安全高效运输的重要保障[5]。目前矿井人员和车辆精确定位主要采用超宽带(Ultra Wide Band,UWB)无线通信技术,可实现厘米级高精度定位,并具有抗多径能力强、系统复杂性低等特点[6-11]。在算法上,主要采用飞行时间(Time of Flight,TOF)定位方法,具有定位精度不受信号发送功率、接收灵敏度和信号传输衰减影响,不需定位分站与定位卡时钟同步等优点,但需双天线或双定位分站联合测距和定向,以辨识定位卡位于定位分站左侧或右侧,不便于天线安装维护[12-14]。因此,本文提出了到达相位差(Phase Difference of Arrival,PDOA)与TOF煤矿井下联合定位方法,通过定位分站的2根天线与定位卡之间的TOF平均值计算定位卡距分站的距离,通过PDOA值判断定位卡在分站的哪一侧,可缩短双天线距离,将双天线集成为一体,便于安装维护。
1. 方法原理
1.1 TOF测距方法
目前应用广泛的TOF测距方法属于双向测距技术,主要利用无线电信号在源节点和目的节点之间的飞行时间来测量二者之间的距离[15-16]。TOF测距原理如图1所示。
源节点A向目的节点B发送一个请求数据包,目的节点B收到数据包并对其进行处理,将周转时间TA封装到应答数据包中并发送给源节点A,源节点A计算出从开始发送请求数据包到接收到目的节点B返回的应答数据包的总时间TZ,用总时间TZ减去周转时间TA就是双方数据包在飞行中度过的往返时间,记为TR。假定在每个方向发生的飞行时间TF等于一半的往返时间:
$$ T_{{\rm{F}}}=T_{{\rm{R}}}/2=(T_{{\rm{Z}}}-T_{{\rm{A}}})/2 $$ (1) 则2个节点之间的距离为
$$ D=cT_{{\rm{F}}} $$ (2) 式中c为光速,c=3×108 m/s。
矿用本安型定位分站为双天线设计,分站通过1 m长的馈线与天线相连。安装时,2根天线在分站相反方向形成与巷道壁平行的直线。2根天线独立与通信覆盖范围内的定位卡测距,利用二者距离差的符号判断定位卡在分站的哪一侧,从而实现对定位卡的一维定位,如图2所示。
1.2 PDOA定位算法
PDOA定位算法具有以下优点:角度估计精度高;可减小用于定向的2根天线之间的距离;将定位分站的2根天线一体化,便于安装维护;定位精度高。基于PDOA的到达角度(Angle of Arrival,AOA)估计原理如图3所示。
从定位卡发送的无线电信号到达定位分站的2根天线,信号路径长度的差别p与天线M,N之间的距离d和AOA值θ满足下式。
$$ p=d{\rm{sin}} \; \theta $$ (3) 2根天线接收的信号中的第一路径(First-Path)的PDOA为
$$\alpha =2{\text{π}} p / \lambda $$ (4) 式中λ为波长。
$$\theta=\arcsin \; (\alpha\lambda / 2 {\text{π}} d) $$ (5) 当d<λ/2时,θ与α在[−π/2,π/2]上有一一对应关系。
1.3 PDOA与TOF联合定位方法
基于UWB的PDOA与TOF联合定位方案:通过2根天线与定位卡之间的TOF平均值估计定位卡距分站的距离;在天线距离小于信号半波长的情况下,对于煤矿巷道一维定位场景,可以基于PDOA值判断定位卡在分站的哪一侧,而不必求出具体的AOA值。
仅采用TOF技术的定位分站安装时2根天线必须分开一定的距离,且使用支架固定,需要将2根天线的距离录入定位软件系统,而天线较易因其他矿井施工活动误碰而改变位置,使系统稳定性受到影响[20-21]。采用PDOA与TOF联合定位方法的定位分站用仅5 cm长的棒状天线取代接有1 m馈线的平面天线,便于天线角度固定,安装简单,维护方便,有利于节省人力成本,提升系统稳定性。棒状天线和平面天线对比如图4所示。
2. 应用测试
2.1 测试设计
在神东煤炭集团大柳塔煤矿东辅助运输大巷进行测试。巷道宽6 m、高5 m,断面为半圆拱形,巷道平坦、无煤尘。巷道顶部及左右侧巷帮中部有金属管道,整个巷道为水泥墙面,地面有有轨电车轨道,如图5所示。主要测试器材为矿用本安型定位分站、车辆定位卡及相应的固定支撑器材,激光测距仪等。定位分站和车辆定位卡发射的电磁波信号中心频率为4.0 GHz。
本文测试分为PDOA方向测试和TOF精度测试2个部分,布置如图6所示。测试步骤:① 将定位分站与车辆定位卡分别固定到支撑器材上。② 用RS485通信线缆将定位分站与业务化运行的矿井定位系统定位分站连接,开启分站。③ 将定位分站天线固定到巷帮,高度为2 m。④ 调节车辆定位卡到合适位置固定,高度为1.5 m。⑤ 进行PDOA方向测试,车辆定位卡在定位分站两侧位置取样。⑥ 用激光测距仪测量车辆定位卡天线与定位分站天线的距离。⑦ 车辆定位卡与定位分站每1 s通信1次,距离固定后,每个采样点车辆定位卡固定10 s以获得稳定读数。⑧ 移动车辆定位卡远离定位分站,重复测试步骤⑤和步骤⑥。⑨ 进行TOF精度测试,车辆定位卡在定位分站单侧位置取样。⑩ 用激光测距仪测量车辆定位卡天线与定位分站天线的距离。⑪ 距离固定后,每个采样点车辆定位卡固定1 min以获得足够数据。⑫ 移动车辆定位卡远离定位分站,重复测试步骤⑩和步骤⑪。⑬ 测试数据通过定位系统上传至地面服务器,测试完毕后从服务器下载数据到本地。
2.2 PDOA方向测试结果
PDOA方向测试结果如图7所示(图中包含41个点位的测试数据,零点是定位分站所在位置),可看出在定位分站两侧,PDOA值符号相反。因此,可以通过PDOA值的符号判断定位卡方向。
2.3 TOF精度测试结果
在距定位分站一侧200 m范围内的18个点位进行TOF精度测试,距离近时测试点间距小,距离远时测试点间距大。将测试点位测试数据的平均值用于误差计算,结果见表1。
表 1 TOF精度测试数据Table 1. TOF precision test data真实距离/m 测量均值/m 绝对误差/m 相对误差/% 1.938 1.895 0.043 2.22 2.922 2.855 0.067 2.29 4.779 4.829 0.050 1.05 8.186 8.206 0.020 0.24 10.984 10.874 0.110 1.00 15.338 15.198 0.140 0.91 20.726 20.616 0.110 0.53 25.446 25.541 0.095 0.37 30.921 30.952 0.031 0.10 40.767 40.696 0.071 0.17 61.731 61.627 0.104 0.17 82.217 82.229 0.012 0.01 100.479 100.398 0.081 0.08 122.302 122.376 0.074 0.06 139.672 139.557 0.115 0.08 159.092 158.951 0.141 0.09 177.285 177.398 0.113 0.06 198.489 198.350 0.139 0.07 将测试点位误差与真实距离绘制成曲线,如图8所示。可看出在约82 m处误差最小,为1.2 cm;在约159 m处误差最大,为14.1 cm,接近定位系统设备所采用的DW1000型UWB定位芯片的设计理论精度10 cm;在测试距离范围内,精度与距离没有明显的相关变化趋势。
由于业务化运行的矿井定位系统有实时展示需求,为保证展示效果,运动中的定位目标轨迹应尽量平滑。所以,系统的定位稳定性较为关键,即在不考虑定位精度的情况下,对同一位置的定位卡进行多次测量,其测量值的分布范围应尽量小。取距定位分站距离最远的198 m处测试点位的测试数据进行分析,在此处共有62个测量值。计算测量值与其均值的离差,将离差分为10组,通过直方图统计各组测量值的频数,结果如图9所示。可看出离差全部在10 cm内,分布近似正态分布。将离差进行正态分布拟合,得到离差分布的标准差为0.033 4。
离差经验分布与正态分布拟合结果的累计概率曲线如图10所示,可看出二者吻合度非常好,表明本文提出的联合定位方法具有良好的稳定性。
3. 结语
采用PDOA与TOF煤矿井下联合定位方法的定位分站用长度仅5 cm的棒状天线取代接有1 m馈线的平面天线,硬件实现方案更简单,维护更方便,有利于节省人力成本,提升系统稳定性。在大柳塔煤矿井下进行了PDOA方向和TOF精度测试,结果表明:利用PDOA值的符号可以正确判断定位卡在定位分站的哪一侧;定位精度在15 cm以内,可为煤矿安全生产提供精准的位置服务;在200 m测试距离范围内,定位精度不受距离远近影响;TOF测距数值稳定在相对其均值±10 cm的范围内,具有良好的稳定性。
-
表 1 综采关键设备及主要监测信号
Table 1 Key equipment of fully mechanized mining and main monitoring signals
对象 监测信号 采煤机 截割部电动机温度[19-20]、电流[19-20]、转速[20]、振动[19];牵引部电动机电流[19-20]、温度[19-20]、牵引速度[19-20];工作面位置及倾角[20]、采高[20]、机身姿态[20]等 刮板输送机 电动机电流[21-22]、电压[21-22]、温度[21-22];齿轮箱振动[21-22]、油液温度[21-22]、润滑油油位[21-22]等 液压支架 油液压力[23]、支架姿态监测[24]、护板打开采高[25]等 乳化液泵 电动机电流[26-27]、乳化液温度[26-27]、液位[26-27]、压力[26-27]等 转载机 电动机温度、转速、振动、运输速度、胶带裂纹、胶带跑偏等[28] 表 2 非线性特征提取主要方法
Table 2 Main methods of nonlinear feature extraction
方法种类 特点 核主成分分析 考虑特征非线性相似性;忽略样本在高维特征空间的局部流形结构 拉普拉斯特征映射 从局部的角度去构建数据之间的关系,没有精确的投影矩阵,映射后能保持原有的数据结构 局部保持投影 有明确的投影矩阵;没有充分利用类标签信息,无法处理高度非线性的数据 等距特征映射 没有精确的投影矩阵 受限玻尔兹曼机 能同时提取数据的初级自然特征和高层次目标特征;需要大量样本 深度置信网络 能通过隐藏层提取数据高层次目标特征;需要大量样本;模型可解释性差 表 3 综采设备健康状态评估方法对比
Table 3 Comparison of health status assessment of fully mechanized equipment methods
方法种类 优点 缺点 模型驱动 时空复杂度较低,物理意义清晰 数学解析模型的完整性和准确性要求较高 知识驱动 对整机或子系统的横、纵向退化过程有良好解释,时空复杂度低,物理意义清晰 残缺、片面、模糊的先验知识导致模型精度降低,静态模型难以表征设备动态退化过程 数据驱动 需大量状态监测数据,无需专家知识,准确度较高 模型缺乏清晰的物理解释,易受噪声和异常样本干扰 -
[1] WANG Guofa,XU Yongxiang,REN Huaiwei. Intelligent and ecological coal mining as well as clean utilization technology in China:review and prospects[J]. International Journal of Mining Science and Technology,2019,29(2):161-169. DOI: 10.1016/j.ijmst.2018.06.005
[2] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357. WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
[3] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36. WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
[4] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15. LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14(th) Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.
[5] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53. WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53.
[6] 王学文,谢嘉成,郝尚清,等. 智能化综采工作面实时虚拟监测方法与关键技术[J]. 煤炭学报,2020,45(6):1984-1996. WANG Xuewen,XIE Jiacheng,HAO Shangqing,et al. Key technologies of real-time virtual monitoring method for an intelligent fully mechanized coal-mining face[J] Journal of China Coal Society,2020,45(6):1984-1996.
[7] 王家臣. 我国综放开采40年及展望[J]. 煤炭学报,2023,48(1):83-99. WANG Jiachen. 40 years development and prospect of longwall top coal caving in China[J]. Journal of China Coal Society,2023,48(1):83-99.
[8] FINK O,WANG Qin,SVENSEN M,et al. Potential,challenges and future directions for deep learning in prognostics and health management applications[J]. Engineering Applications of Artificial Intelligence,2020,92:103678. DOI: 10.1016/j.engappai.2020.1036783.
[9] SHIN I,LEE J,LEE Y,et al. A framework for prognostics and health management applications toward smart manufacturing systems[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(4):535-554. DOI: 10.1007/s40684-018-0055-0
[10] DUAN Chaoqun,DENG Chao. Prognostics of health measures for machines with aging and dynamic cumulative damage[J]. IEEE/ASME Transactions on Mechatronics,2020,25(5):2264-2275. DOI: 10.1109/TMECH.2020.2995757
[11] FINK O,WANG Qin,SVENSEN M,et al. Potential,challenges and future directions for deep learning in prognostics and health management applications[J]. Engineering Applications of Artificial Intelligence,2020,92. DOI: 10.1016/j.engappai.2020.103678.
[12] SINGH V,GANGSAR P,PORWAL R,et al. Artificial intelligence application in fault diagnostics of rotating industrial machines:a state-of-the-art review[J]. Journal of Intelligent Manufacturing,2023,34:931-960. DOI: 10.1007/s10845-021-01861-5
[13] ZHAO Zhibin,WU Jingyao,LI Tianfu,et al. Challenges and opportunities of AI-enabled monitoring,diagnosis & prognosis:a review[J]. Chinese Journal of Mechanical Engineering,2021,34(3):16-44.
[14] 樊红卫,张旭辉,曹现刚,等. 智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J]. 振动与冲击,2020,39(24):194-204. FAN Hongwei,ZHANG Xuhui,CAO Xiangang,et al. Research status and prospect of fault diagnosis of China's coal mine machines under background of intelligent mine[J]. Journal of Vibration and Shock,2020,39(24):194-204.
[15] CHE Changchagn,WANG Huawei,NI Xiaomei,et al. Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis[J]. Measurement,2020,173(7). DOI: 10.1016/j.measurement.2020.108655.
[16] MA Meng,SUN Chuang,CHEN Xuefeng. Deep coupling autoencoder for fault diagnosis with multimodal sensory data[J]. IEEE Transactions on Industrial Informatics,2018,14(3):1137-1145. DOI: 10.1109/TII.2018.2793246
[17] 李国发,王彦博,何佳龙,等. 机电装备健康状态评估研究进展及发展趋势[J]. 吉林大学学报(工学版),2022,52(2):267-279. LI Guofa,WANG Yanbo,HE Jialong,et al. Research progress and development trend of health assessment of electromechanical equipment[J]. Journal of Jilin University(Engineering and Technology Edition),2022,52(2):267-279.
[18] 赵丽琴,刘昶,曹明生,等. 复杂装备健康度评估方法研究综述[J]. 计算机测量与控制,2021,29(11):1-7,17. ZHAO Liqin,LIU Chang,CAO Mingsheng,et al. Review of health assessment methods for complex equipment[J]. Computure Measurement & Control,2021,29(11):1-7,17.
[19] 曹现刚,雷一楠,宫钰蓉,等. 基于组合赋权法的采煤机健康状态评估方法研究[J]. 煤炭科学技术,2020,48(6):135-141. CAO Xiangang,LEI Yinan,GONG Yurong,et al. Study on health assessment method of shearer based on combination weighting method[J]. Coal Science and Technology,2020,48(6):135-141.
[20] 翟文睿,李贤功,王佳奇,等. 采煤机性能退化评估方法及应用研究[J]. 工矿自动化,2020,46(12):57-63,100. ZHAI Wenrui,LI Xiangong,WANG Jiaqi,et al. Research on shearer performance degradation evaluation and application[J]. Industry and Mine Automation,2020,46(12):57-63,100.
[21] 焦晨浩. 矿用刮板运输机运行状态在线监测系统研究[D]. 太原:太原理工大学,2021. JAO Chenhao. Research on on-line monitoring system of operation state of mine scraper conveyor[D]. Taiyuan:Taiyuan University of Technology,2021.
[22] 赵巧芝. 我国刮板输送机发展现状、趋势及关键技术[J]. 煤炭工程,2020,52(8):183-187. ZHAO Qiaozhi. Current status,development and key technologies of scraper conveyers[J]. Coal Engineering,2020,52(8):183-187.
[23] 马旭东,王跃龙,田慕琴,等. 液压支架健康评估与寿命预测模型研究[J]. 煤炭科学技术,2021,49(3):141-148. MA Xudong,WANG Yuelong,TIAN Muqin,et al. Health assessment and life prediction model of hydraulic support[J]. Coal Science and Technology,2021,49(3):141-148.
[24] 王忠乐. 综采液压支架姿态监测及控制技术[J]. 工矿自动化,2022,48(增刊2):116-117,137. WANG Zhongle. Attitude monitoring and control technology of fully mechanized mining hydraulic support[J]. Journal of Mine Automation,2022,48(S2):116-117,137.
[25] 时培涛,张吉雄,张强,等. 综合赋权的TOPSIS充填采煤液压支架评价方法研究[J]. 采矿与安全工程学报,2023,40(3):543-553. SHI Peitao,ZHANG Jixiong,ZHANG Qiang,et al. Comprehensive weighted TOPSIS method for evaluating the structure design of backfilling hydraulic support[J]. Journal of Mining & Safety Engineering,2023,40(3):543-553.
[26] 陈强. 井下乳化液泵站远程在线状态监测系统的研究与设计[D]. 南昌:南昌航空大学,2017. CHEN Qiang. Research and design of remote online condition monitoring system for underground emulsion pump station[D]. Nanchang:Nanchang Hangkong University,2017.
[27] 牛锐祥,丁华,施瑞,等. 一种乳化液泵分级故障诊断方法[J]. 液压与气动,2021,45(11):47-53. NIU Ruixiang,DING Hua,SHI Rui,et al. A hierarchical fault diagnosis method for emulsion pump[J]. Chinese Hydraulics & Pneumatics,2021,45(11):47-53.
[28] 武秋俊,王建军,郭山国. 基于DL联合信息融合技术的刮板转载机故障诊断[J]. 煤矿机械,2021,42(2):152-154. WU Qiujun,WANG Jianjun,GUO Shanguo. Fault diagnosis of scraper transfer machine based on DL joint with information fusion technology[J]. Coal Mine Machinery,2021,42(2):152-154.
[29] 王海舰,黄梦蝶,高兴宇,等. 考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995-2008. WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering pick wear[J]. Journal of China Coal Society,2021,46(6):1995-2008.
[30] 李曼,郑思雨,刘浩东,等. 采煤机滚筒高度测量传感器工作环境磁场仿真与屏蔽研究[J]. 煤炭科学技术,2022,50(8):204-209. LI Man,ZHENG Siyu,LIU Haodong,et al. Study on magnetic field simulation and shielding design of shearer drum height measurement sensor working environment[J]. Coal Science and Technology,2022,50(8):204-209.
[31] 张强,王海舰,郭桐,等. 基于截齿截割红外热像的采煤机煤岩界面识别研究[J]. 煤炭科学技术,2017,45(5):22-27. ZHANG Qiang,WANG Haijian,GUO Tong,et al. Study on coal-rock interface recognition of coal shearer based on cutting infrared thermal image of picks[J]. Coal Science and Technology,2017,45(5):22-27.
[32] 师建国,高广财,滕睿. 激励频率自适应的采煤机状态压电俘能监测装置研究[J]. 传感技术学报,2018,31(5):683-687. SHI Jianguo,GAO Guangcai,TENG Rui. Study on piezoelectric energy harvesting device for state monitoring of shearer adaptive to excitation frequency[J]. Chinese Journal of Sensors and Actuators,2018,31(5):683-687.
[33] 张旭辉,赖正鹏,吴中华,等. 新型双稳态压电振动俘能系统的理论建模与实验研究[J]. 振动工程学报,2019,32(1):87-96. ZHANG Xuhui,LAI Zhengpeng,WU Zhonghua,et al. Theoretical modeling and experimental study of a new bistable piezoelectric vibration energy harvesting system[J]. Journal of Vibration Engineering,2019,32(1):87-96.
[34] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23. WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
[35] 原景超,郭涛,王思宁. 无线低功耗采煤机状态在线监测系统设计[J]. 煤炭工程,2018,50(8):18-20. YUAN Jingchao,GUO Tao,WANG Sining. Design of wireless low power on line monitoring system for shearer[J]. Coal Engineering,2018,50(8):18-20.
[36] 郁杰,许艳霞,王文梅. 基于人工智能技术的煤矿机电设备状态识别研究[J]. 煤炭技术,2022,41(4):143-146. YU Jie,XU Yanxia,WANG Wenmei. Research on state identification of electromechanical equipment in coal mine based on artificial intelligence technology[J]. Coal Technology,2022,41(4):143-146.
[37] 张睿,张义民,朱丽莎. 采煤机截割部齿轮箱体振动特性实验[J]. 振动与冲击,2019,38(13):179-184,196. ZHANG Rui,ZHANG Yimin,ZHU Lisha. Tests for dynamic characteristics of shearer cutting gearbox[J]. Journal of Vibration and Shock,2019,38(13):179-184,196.
[38] 段蛟龙,许春雨,宋建成,等. 基于振动模型的采煤机摇臂齿轮局部故障频谱分析[J]. 工矿自动化,2016,42(7):34-39. DUAN Jiaolong,XU Chunyu,SONG Jiancheng,et al. Spectrum analysis of partial failure of shearer rocker gear based on vibration model[J]. Industry and Mine Automation,2016,42(7):34-39.
[39] 毛清华,张旭辉,马宏伟,等. 采煤机摇臂齿轮传动系统振源定位分析方法[J]. 振动. 测试与诊断,2016,36(3):466-470,602. MAO Qinghua,ZHANG Xuhui,MA Hongwei,et al. Vibration source location analysis method for ranging arm gear transmission system of shearer[J]. Journal of Vibration,Measurement & Diagnosis,2016,36(3):466-470,602.
[40] 冷军发,郭松涛,荆双喜,等. 基于最小熵解卷积的带式输送机传动滚筒轴承故障诊断[J]. 河南理工大学学报(自然科学版),2015,34(4):514-519. LENG Junfa,GUO Songtao,JING Shuangxi,et al. Rolling element bearing fault diagnosis of belt conveyor driving drum based on minimum entropy deconvolution[J]. Journal of Henan Polytechnic University(Natural Science),2015,34(4):514-519.
[41] 朱兆霞,张福建. 小波分析在采煤机故障诊断中的应用[J]. 煤炭技术,2015,34(12):247-248. ZHU Zhaoxia,ZHANG Fujian. Application of wavelet analysis in shearer fault diagnosis[J]. Coal Technology,2015,34(12):247-248.
[42] 李力,倪松松. 基于改进小波去噪预处理和EEMD的采煤机齿轮箱故障诊断[J]. 中南大学学报(自然科学版),2016,47(10):3394-3400. LI Li,NI Songsong. Shearer gearbox fault diagnosis based on improved wavelet denoising pretreatment and EEMD[J]. Journal of Central South University(Science and Technology),2016,47(10):3394-3400.
[43] 郝尚清,庞新宇,王雪松,等. 基于盲源分离的采煤机摇臂轴承故障诊断方法[J]. 煤炭学报,2015,40(11):2509-2513. HAO Shangqing,PANG Xinyu,WANG Xuesong,et al. Bearing fault diagnosis method for shearer rocker arm based on blind source separation[J]. Journal of China Coal Society,2015,40(11):2509-2513.
[44] 刘旭南,赵丽娟,付东波,等. 采煤机截割部传动系统故障信号小波包分解方法研究[J]. 振动与冲击,2019,38(14):169-175,253. LIU Xunan,ZHAO Lijuan,FU Dongbo,et al. Study on wavelet packet decomposition method for fault signal of shearer cutting unit transmission system[J]. Journal of Vibration and Shock,2019,38(14):169-175,253.
[45] 葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774-788. GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774-788.
[46] 郝志勇,周正啟,袁智,等. 基于实验测试的采煤机截割载荷的分形分布规律研究[J]. 应用力学学报,2019,36(2):417-423,512. HAO Zhiyong,ZHOU Zhengqi,YUAN Zhi,et al. Study on fractal distribution law of cutting load of shearer based on experimental tests[J]. Chinese Journal of Applied Mechanics,2019,36(2):417-423,512.
[47] LI Changpeng,PENG Tianhao,ZHU Yanmin. A cutting pattern recognition method for shearers based on ICEEMDAN and improved grey wolf optimizer algorithm-optimized SVM[J]. Applied Sciences,2021,11(19). DOI: 10.3390/app11199081.
[48] XU Jing,WANG Zhongbin,TAN Chao,et al. A cutting pattern recognition method for shearers based on improved ensemble empirical mode decomposition and a probabilistic neural network[J]. Sensors,2015,15(11):27721-27737. DOI: 10.3390/s151127721
[49] SI Lei,WANG Zhongbin,TAN Chao,et al. A feature extraction method based on composite multi-scale permutation entropy and laplacian score for shearer cutting state recognition[J]. Measurement,2019,145:84-93. DOI: 10.1016/j.measurement.2019.05.070
[50] SI Lei,WANG Zhongbin,TAN Chao,et al. A feature extraction method for shearer cutting pattern recognition based on improved local mean decomposition and multi-scale fuzzy entropy[J]. Current Science:A Fortnightly Journal of Research,2017(11). DOI: 10.18520/CS/V112/I11/2243-2252.
[51] SI Lei,WANG Zhongbin,TAN Chao,et al. Vibration-based signal analysis for shearer cutting status recognition based on local mean decomposition and fuzzy c-means clustering[J]. Applied Sciences,2017,7(2). DOI: 10.3390/app7020164.
[52] 曹现刚,李彦川,雷卓,等. 采煤机健康状态智能评估方法研究[J]. 工矿自动化,2020,46(6):41-47. CAO Xiangang,LI Yanchuan,LEI Zhuo,et al. Research on intelligent evaluation method of health state of shearer[J]. Industry and Mine Automation,2020,46(6):41-47.
[53] 田立勇. 基于多源数据融合的采煤机截割载荷识别与预测研究[D]. 阜新:辽宁工程技术大学,2020. TIAN Liyong. Research on identification and prediction of shearer cutting load based on multi-source data fusion[J]. Fuxin:Liaoning Technical University,2020.
[54] 于宁,孙业新,陈洪月. 基于多源数据融合的采煤机截割载荷预测方法[J]. 中国机械工程,2021,32(10):1247-1253,1259. YU Ning,SUN Yexin,CHEN Hongyue. Prediction method of cutting loads of shearers based on multi-source data fusion[J]. China Mechanical Engineering,2021,32(10):1247-1253,1259.
[55] SI Lei,WANG Zhongbin,LIU Xinhua,et al. Cutting state diagnosis for shearer through the vibration of rocker transmission part with an improved probabilistic neural network[J]. Sensors,2016,16(4). DOI: 10.3390/s16040479.
[56] 樊鑫,程建远,王云宏,等. 基于小波散射分解变换的煤矿微震信号智能识别[J]. 煤炭学报,2022,47(7):2722-2731. DOI: 10.13225/j.cnki.jccs.2021.1382 FAN Xin,CHENG Jianyuan,WANG Yunhong,et al. Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform[J]. Journal of China Coal Society,2022,47(7):2722-2731. DOI: 10.13225/j.cnki.jccs.2021.1382
[57] DING Hua,YANG Liangliang,YANG Zhaojian. A predictive maintenance method for shearer key parts based on qualitative and quantitative analysis of monitoring data[J]. IEEE Access,2019,7:108684-108702. DOI: 10.1109/ACCESS.2019.2933676
[58] 曹现刚,许欣,雷卓,等. 基于降噪自编码器与改进卷积神经网络的采煤机健康状态识别[J]. 信息与控制,2022,51(1):98-106. DOI: 10.13976/j.cnki.xk.2022.1071 CAO Xiangang,XU Xin,LEI Zhuo,et al. Health status identification of shearer based on denoising autoencoder and improved convolutional neural network[J]. Information and Control,2022,51(1):98-106. DOI: 10.13976/j.cnki.xk.2022.1071
[59] SI Lei,WANG Zhongbin,LIU Xinhua,et al. A sensing identification method for shearer cutting state based on modified multi-scale fuzzy entropy and support vector machine[J]. Engineering Applications of Artificial Intelligence,2019,78:86-101. DOI: 10.1016/j.engappai.2018.11.003
[60] SI Lei,WANG Zhongbin,LIU Xinhua,et al. Multi-sensor data fusion identification for shearer cutting conditions based on parallel quasi-newton neural networks and the Dempster-Shafer theory[J]. Sensors,2015,15(11):28772-28795. DOI: 10.3390/s151128772
[61] 彭强. 煤矿大型机械设备滚动轴承故障诊断改进方法研究[J]. 煤炭工程,2023,55(4):141-146. PENG Qiang. Improved methods for fault diagnosis of rolling bearings for large mechanical equipment in coal mines[J]. Coal Engineering,2023,55(4):141-146.
[62] WANG Zhongbin,XU Xihua,SI Lei,et al. A dynamic health assessment approach for shearer based on artificial immune algorithm[J]. Computational Intelligence and Neuroscience,2016. DOI: 10.1155/2016/9674942.
[63] 郑云龙. 基于BP神经网络的刮板输送机健康状态实时评估[J]. 煤矿机械,2017,38(6):148-150. ZHENG Yunlong. Real-time health assessment for scraper conveyor based on BP neural network[J]. Coal Mine Machinery,2017,38(6):148-150.
[64] ZHAN Jun,WANG Ronglin,YI Lingzhi,et al. Health assessment methods for wind turbines based on power prediction and mahalanobis distance[J]. International Journal of Pattern Recognition and Artificial Intelligence,2019,33(2):1951001.1-1951001.17.
[65] ATAMURADOV V,MEDJAHER K,CAMCI F,et al. Railway point machine prognostics based on feature fusion and health state assessment[J]. IEEE Transactions on Instrumentation and Measurement,2018,68(8):2691-2704.
[66] 宋传学,肖峰,刘思含,等. 基于无迹卡尔曼滤波的轮毂电动机驱动车辆状态观测[J]. 吉林大学学报(工学版),2016,46(2):333-339. SONG Chuanxue,XIAO Feng,LIU Sihan,et al. Observation of vehicle state driven by wheel motor based on unscented Kalman filter[J]. Journal of Jilin University (Engineering and Technology Edition),2016,46(2):333-339.
[67] 朱晓荣,刘亚维. 基于模糊综合评判的光伏阵列状态评估[J]. 太阳能学报,2020,41(11):103-111. ZHU Xiaorong,LIU Yawei. State estimation of photovoltaic array based on fuzzy comprehensive evaluation[J]. Acta Energiae Solaris Sinica,2020,41(11):103-111.
[68] LIU Zhunga,PAN Quan,DEZERT J,et al. Combination of classifiers with optimal weight based on evidential reasoning[J]. IEEE Transactions on Fuzzy Systems,2018,26(3):1217-1230. DOI: 10.1109/TFUZZ.2017.2718483
[69] YIN Xiaojing,ZHANG Bangcheng,ZHOU Zhijie,et al. A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base[J]. Microelectronics Reliability,2018,84:187-196. DOI: 10.1016/j.microrel.2018.03.031
[70] YANG Yifei,ZHANG Maohui,DAI Yuewei. A fuzzy comprehensive CS-SVR model-based health status evaluation of radar[J]. Plos One,2019,14(3):1-20.
[71] CAI Baoping,LIU Yonghong,LIU Zengkai,et al. Application of Bayesian networks in reliability evaluation[J]. IEEE Transactions on Industrial Informatics,2019,15(4):2146-2157. DOI: 10.1109/TII.2018.2858281
[72] BEHNOUSH R,YI S. Deep learning for prognostics and health management:state of the art,challenges,and opportunities[J]. Measurement,2020,163:107929. DOI: 10.1016/j.measurement.2020.107929.
[73] 丁飞,王谦. 液压支架结构疲劳动态可靠性评估方法[J]. 中国安全科学学报,2015,25(6):86-90. DING Fei,WANG Qian. Fatigue dynamic reliability assessment method of hydraulic support structure[J]. China Safety Science Journal,2015,25(6):86-90.
[74] 宋宇宁,徐晓辰. 基于SolidWorks和ANSYS的液压支架顶梁疲劳可靠性分析[J]. 煤炭工程,2019,51(1):91-95. SONG Yuning,XU Xiaochen. Analysis of the beam fatigue reliability of hydraulic support based on ANSYS and SolidWorks[J]. Coal Engineering,2019,51(1):91-95.
[75] LIN Lingyan,LIN Chen,GENG Pulong,et al. Aging life evaluation of coal mining flexible EPR cables under multi-stresses[J]. IEEE Access,2020,8:53539-53546. DOI: 10.1109/ACCESS.2020.2981359
[76] XING Zhizhong,GUO Wei. Analysis and research on working performance of shearer based on discrete element method[J]. IEEE Access,2019,7:121321-121331. DOI: 10.1109/ACCESS.2019.2937569
[77] 赖明荣. 基于状态检测的液压支架寿命预测方法研究[D]. 太原:太原理工大学,2013. LAI Mingrong. Prediction method of hydraulic support life based on state inspection[D]. Taiyuan:Taiyuan University of Technology,2013.
[78] 于健浩,祝凌甫,徐刚. 煤矿智能综采工作面安全高效开采适应性评价[J]. 煤炭科学技术,2019,47(3):60-65. YU Jianhao,ZHU Lingfu,XU Gang. Safety and high efficiency adaptability evaluation of coal mine intelligent fully-mechanized mining face[J]. Coal Science and Technology,2019,47(3):60-65.
[79] 闫向彤,董鹏辉,熊友錕,等. 基于PCA的采煤机健康状态云模型评估分析[J]. 煤炭工程,2023,55(6):152-157. YAN Xiangtong,DONG Penghui,XIONG Youkun,et al. Cloud model evaluation for health state of coal shearer based on PCA[J]. Coal Engineering,2023,55(6):152-157.
[80] SI Lei,WANG Zhongbin,LIU Ze,et al. Health condition evaluation for a shearer through the integration of a fuzzy neural network and improved particle swarm optimization algorithm[J]. Applied Sciences,2016,6(6):171. DOI: 10.3390/app6060171
[81] 赵丽娟,王雅东,王斌. 含夹矸煤层条件下采煤机螺旋滚筒工作性能分析与预测[J]. 中国机械工程,2021,32(8):976-986. DOI: 10.3969/j.issn.1004-132X.2021.08.012 ZHAO Lijuan,WANG Yadong,WANG Bin. Analysis and prediction of working performance of shearer spiral drums under coal seam with gangue[J]. China Mechanical Engineering,2021,32(8):976-986. DOI: 10.3969/j.issn.1004-132X.2021.08.012
[82] 刘晓波,孔屹刚,李涛,等. 采煤机调高泵隐半马尔可夫模型磨损故障预测[J]. 科学技术与工程,2020,20(29):11980-11986. DOI: 10.3969/j.issn.1671-1815.2020.29.023 LIU Xiaobo,KONG Yigang,LI Tao,et al. Wear fault prognostics of hidden semi-markov model of shearer pump[J]. Science Technology and Engineering,2020,20(29):11980-11986. DOI: 10.3969/j.issn.1671-1815.2020.29.023
[83] SI Lei,WANG Zhongbin,LIU Xinhua. A novel identification approach for shearer running status through integration of rough sets and improved wavelet neural network[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2016,230(16):2792-2805.
[84] 曹现刚,陈瑞昊,伍宇泽,等. 基于CNN−XGBoost的采煤机健康状态评估[J]. 煤炭技术,2022,41(11):173-176. DOI: 10.13301/j.cnki.ct.2022.11.040 CAO Xiangang,CHEN Ruihao,WU Yuze,et al. Health state assessment of coal shearer based on CNN-XGBoost[J]. Coal Technology,2022,41(11):173-176. DOI: 10.13301/j.cnki.ct.2022.11.040
[85] 陈相丞. 采煤机摇臂系统维修状态评估方法研究[D]. 徐州:中国矿业大学,2018. CHEN Xiangcheng. Study on maintenance state evaluation methods of rocker ARM system of shearer[D]. Xuzhou:China University of Mining and Technology,2018.
[86] 丁华,杨亮亮,杨兆建,等. 数字孪生与深度学习融合驱动的采煤机健康状态预测[J]. 中国机械工程,2020,31(7):815-823. DING Hua,YANG Liangliang,YANG Zhaojian,et al. Health prediction of shearers driven by digital twin and deep learning[J]. China Mechanical Engineering,2020,31(7):815-823.
[87] 曹怀建,贾永森,刘毅,等. 基于深度学习与SOM神经网络融合的采煤机截齿寿命预测研究[J]. 煤矿机械,2022,43(2):69-72. CAO Huaijian,JIA Yongsen,LIU Yi,et al. Shearer pick life prediction based on deep learning and SOM neural network fusion[J]. Coal Mine Machinery,2022,43(2):69-72.
-
期刊类型引用(2)
1. 季瑞翔. 一种基于视觉感知的带式输送机煤量测量方法研究. 山东煤炭科技. 2024(05): 110-114 . 百度学术
2. 解海燕,李杰,赵国栋. 非结构化高维大数据异常流量时间点挖掘算法. 计算机仿真. 2024(07): 474-478 . 百度学术
其他类型引用(1)