Analysis of heat dissipation performance of mine inverter based on the integrated model
-
摘要: 矿用变频器空间密闭,运行过程中内部功率器件自身会产生大量热量,易产生热退化和热失效现象。现有研究主要是针对矿用变频器某类功率器件或散热器进行单独分析,未考虑它们相互之间的热交换作用,且现有研究与矿用变频器运行状态的结合不够紧密,导致生热和传热过程与实际情况偏差较大,降低了散热性能分析的准确度和全面性。针对上述问题,以630 kW/1 140 V四象限矿用变频器为研究对象,基于一体化模型对矿用变频器散热性能进行分析。建立了考虑等效电阻的矿用变频器主电路拓扑模型,分析母排与电缆、充/放电电阻、吸收电阻、IGBT模块、输出电抗器的电气特性并计算功率损耗。采用强制水冷+风冷+自然冷却方式对矿用变频器的散热系统进行优化设计。将IGBT模块、吸收电阻置于水冷散热器的基板上,配置风机加速输出电抗器的热交换效率,其他功率器件则自然散热。基于一体化模型对矿用变频器内部温度场特性、对流换热特性进行数值模拟分析,并搭建矿用变频器加载试验平台验证基于一体化模型的温度场仿真的正确性及散热设计的有效性。结果表明:① 在内部功率器件的传导、对流及辐射换热作用下,隔爆外壳的温度高于环境温度,最低为36 ℃,且后基板的温度高于其他隔爆面,最高可达70 ℃。矿用变频器内部组件均未超过80 ℃,远低于相关标准规定值,具有良好的散热性能。IGBT模块的温度最高,机心母排组件的温度次之,直流滤波电容组件的温度最低。② 充电过程中功率器件产生了较大的损耗,但由于充电时间极短,该损耗不会引起温度的剧烈变化,功率器件的瞬时温度最高不超过59 ℃;放电电阻的瞬时温度最高可达267 ℃,100 ℃以上的作用时间为200 s,梯形铝壳电阻的耐高温冲击能力可满足该应用场景,且未形成热应力循环,不会产生热击穿、热失效现象。③ 各功率器件在2~3 h后温度逐渐趋于稳定,各标定测温点的实验与仿真结果在整体趋势上保持较好的一致性。Abstract: The space of the mine inverter is closed. The internal power device itself will produce a lot of heat in the operation process, which is easy to produce thermal degradation and thermal failure. In the existing research, a certain power device or a radiator of the mine inverter is analyzed independently. The heat exchange effect among the power device or the radiator is not considered. The combination with the running state of the mine inverter is not close enough. Therefore, the deviation between the heat generation and heat transfer processes and the actual situation is large. This reduces the accuracy and comprehensiveness of the heat dissipation performance analysis. In order to the above problems, taking the 630 kW/1 140 V four-quadrant mine inverter as the research object, the heat dissipation performance of the mine inverter is analyzed based on integrated model . A topological model of the main circuit of the mine inverter considering equivalent resistance is established. The electrical characteristics of the bus bar and the cable, the charge/discharge resistance, the absorption resistance, the IGBT module and the output reactor are analyzed, and the power loss is calculated. The cooling system of the inverter is optimized by forced water cooling + air cooling + natural cooling. The IGBT module and the absorption resistor are arranged on the substrate of the water-cooling radiator. The fan is configured to accelerate the heat exchange efficiency of the output reactor, and other power devices dissipate heat naturally. Based on the integrated model, the temperature field characteristics and heat transfer characteristics of the mine inverter are numerically simulated and analyzed. The correctness of the temperature field simulation based on the integrated model and the effectiveness of the heat dissipation design are verified by building the loading test platform of mineing inverter . The results show the following points. ① Under the heat transfer of conduction, convection and radiation of the internal power devices, the temperature of the flameproof enclosure is higher than the ambient temperature. The lowest temperature is 36 ℃. The temperature of the rear substrate is higher than that of the other flameproof surfaces, and the highest temperature can reach 70 ℃. The temperature of the internal components of the mine inverter is not higher than 80 ℃, which is far lower than the specified value of relevant standards. The mine inverter has good heat dissipation performance. The temperature of IGBT module is the highest, the temperature of the bus bar assembly is the second, and the temperature of the DC filter capacitor assembly is the lowest. ② The power device in the process of charging has a larger loss. But because of the short charging time, the loss will not cause severe changes in temperature. The instantaneous temperature of the power device is not more than 59 ℃. The maximum instantaneous temperature of the discharge resistance can reach 267 ℃, and the action time above 100 ℃ is 200 seconds. The high-temperature impact resistance of the trapezoidal aluminum shell resistor can meet the application scenario. It does not form a thermal stress cycle, and will not produce thermal breakdown and thermal failure. ③ The temperature of each power device tends to be stable gradually after 2-3 h. The experimental and simulation results of each calibration temperature measurement point keep good consistency in the overall trend.
-
-
-
[1] 葛世荣. 煤矿智采工作面概念及系统架构研究[J]. 工矿自动化,2020,46(4):1-9. GE Shirong. Research on concept and system architecture of smart mining workface in coal mine[J]. Industry and Mine Automation,2020,46(4):1-9.
[2] 朱永平,徐晓建. 浅谈矿用变频器发展趋势[J]. 工矿自动化,2017,43(10):18-23. ZHU Yongping,XU Xiaojian. Development trend of mine frequency converter[J]. Industry and Mine Automation,2017,43(10):18-23.
[3] 史晗,蒋德智,荣相,等. 矿用变频器LRC滤波器寄生参数影响研究[J]. 工矿自动化,2020,46(8):44-50. SHI Han,JIANG Dezhi,RONG Xiang,et al. Research on influence of parasitic parameters of LRC filter for mine-used inverter[J]. Industry and Mine Automation,2020,46(8):44-50.
[4] 杨伟林. 浅谈防爆变频器的散热设计[J]. 防爆电机,2019,54(1):36-39,42. DOI: 10.3969/J.ISSN.1008-7281.2019.01.11 YANG Weilin. Brief discussion on heat dissipation design of explosion-proof frequency inverter[J]. Explosion-Proof Electric Machine,2019,54(1):36-39,42. DOI: 10.3969/J.ISSN.1008-7281.2019.01.11
[5] 胡锐,陈权,胡存刚,等. 基于功率器件的3L−NPC逆变器失效机理研究[J]. 电力电子技术,2021,55(2):137-140. HU Rui,CHEN Quan,HU Cungang,et al. Study of the failure mechanism of 3L-NPC inverter based on power devices[J]. Power Electronics,2021,55(2):137-140.
[6] 刘四军,韩威,张海星,等. 高压开关柜温度流体场仿真及散热优化研究[J]. 高压电器,2020,56(10):63-69. LIU Sijun,HAN Wei,ZHANG Haixing,et al. Research on temperature fluid field simulation and heat dissipation optimization of high voltage switchgear[J]. High Voltage Apparatus,2020,56(10):63-69.
[7] 顾胜坚,尤飘飘,江友华. 非理想供电情况下的干式变压器热性能分析[J]. 变压器,2020,57(6):19-24. GU Shengjian,YOU Piaopiao,JIANG Youhua. Thermal performance analysis of dry-type transformer under condition of non-ideal power supply[J]. Transformer,2020,57(6):19-24.
[8] 李金忠,张丹丹,徐征宇,等. 有限元法分析隔声装置对特高压并联电抗器散热性能的影响[J]. 高电压技术,2017,43(3):822-827. LI Jinzhong,ZHANG Dandan,XU Zhengyu,et al. Heat dissipation performance of ultra-high voltage shunt reactor with sound insulation based on finite element method[J]. High Voltage Engineering,2017,43(3):822-827.
[9] 方杰,常桂钦,彭勇殿,等. 基于ANSYS的大功率IGBT模块传热性能分析[J]. 大功率变流技术,2012(2):16-20. FANG Jie,CHANG Guiqin,PENG Yongdian,et al. Thermal performance analysis of high-power IGBT module based on ANSYS[J]. High Power Converter Technology,2012(2):16-20.
[10] 徐鹏程,陶汉中,张红. IGBT 热管式整体翅片散热器优化分析[J]. 制冷学报,2014,35(5):101-104,109. DOI: 10.3969/j.issn.0253-4339.2014.05.018 XU Pengcheng,TAO Hanzhong,ZHANG Hong. Optimization and analysis of IGBT heat pipe heat sink with integral fin[J]. Journal of Refrigeration,2014,35(5):101-104,109. DOI: 10.3969/j.issn.0253-4339.2014.05.018
[11] 丁杰,张平. 地铁车辆牵引逆变器热管散热器的温升试验及热仿真[J]. 中国铁道科学,2016,37(3):95-102. DOI: 10.3969/j.issn.1001-4632.2016.03.014 DING Jie,ZHANG Ping. Temperature rise test and thermal simulation of heat-pipe radiator of metro vehicel traction inverter[J]. China Railway Science,2016,37(3):95-102. DOI: 10.3969/j.issn.1001-4632.2016.03.014
[12] 母福生,王海军,江乐新,等. 用于地铁变流器的平板微热管散热器数值模拟与实验研究[J]. 制冷学报,2019,40(5):102-108. DOI: 10.3969/j.issn.0253-4339.2019.05.102 MU Fusheng,WANG Haijun,JIANG Lexin,et al. Numerical simulation and experimental study of flat microheat pipe radiator for metro converter[J]. Journal of Refrigeration,2019,40(5):102-108. DOI: 10.3969/j.issn.0253-4339.2019.05.102
[13] 苗盈灜. 矿用大功率隔爆变频器热设计开发[J]. 煤炭科学技术,2016,44(增刊1):102-105. MIAO Yingying. Thermal design and development of high power flame-proof inverter in coal mine[J]. Coal Science and Technology,2016,44(S1):102-105.
[14] 尹玉兴,朱兆霞. 矿用隔爆型变频器水冷散热性能研究[J]. 煤矿机械,2015,36(8):83-85. DOI: 10.13436/j.mkjx.201508034 YIN Yuxing,ZHU Zhaoxia. Research of water cooling performance of mine flameproof frequency converter[J]. Coal Mine Machinery,2015,36(8):83-85. DOI: 10.13436/j.mkjx.201508034
[15] 王庆海. 煤矿提升机双PWM变频调速系统的研究[J]. 煤炭技术,2017,36(4):237-239. WANG Qinghai. Research on dual PWM frequency conversion speed regulation system for mine hoist[J]. Coal Technology,2017,36(4):237-239.
[16] 纽春萍,陈德桂,刘颖异,等. 交流接触器温度场仿真及影响因素的分析[J]. 电工技术学报,2007(5):71-77. NIU Chunping,CHEN Degui,LIU Yingyi,et al. Temperature field simulation of AC contactor and analysis of its influence factors[J]. Transactions of China Electrotechnical Society,2007(5):71-77.
[17] 肖继学,龚建全,董圣友,等. 电缆热路模型特征参数计算方法综述[J]. 西华大学学报(自然科学版),2015,34(5):39-42. XIAO Jixue,GONG Jianquan,DONG Shengyou,et al. Overview of calculation methods to characteristic parameters of the thermal circuit model for power cable[J]. Journal of Xihua University(Natural Science),2015,34(5):39-42.
[18] 荣相,史晗,蒋德智,等. 一种矿用变频器滤波装置[J]. 工矿自动化,2020,46(5):76-81. RONG Xiang,SHI Han,JIANG Dezhi,et al. A mine-used frequency converter filter device[J]. Industry and Mine Automation,2020,46(5):76-81.
[19] 刘鹏辉,苏梅英,李君,等. 基于高功率密度芯片应用的微流道散热研究[J]. 电力电子技术,2021,55(1):129-132. DOI: 10.3969/j.issn.1000-100X.2021.01.034 LIU Penghui,SU Meiying,LI Jun,et al. Research on microchannel heat dissipation based on high power density chip application[J]. Power Electronics,2021,55(1):129-132. DOI: 10.3969/j.issn.1000-100X.2021.01.034
[20] 伍毅,丁杰,徐景秋,等. 基于Icepak的机车牵引变流器热设计[J]. 电力机车与城轨车辆,2020,43(2):43-47,56. WU Yi,DING Jie,XU Jingqiu,et al. Thermal design of locomotive traction converter based on Icepak[J]. Electric Locomotives & Mass Transit Vehicles,2020,43(2):43-47,56.
[21] 祝德春,王新春. 储能电池模组的风冷散热优化设计研究[J]. 电源技术,2022,46(5):523-527. ZHU Dechun,WANG Xinchun. Research on optimal design of air cooling and heat dissipation of energy storage battery module[J]. Chinese Journal of Power Sources,2022,46(5):523-527.
-
期刊类型引用(13)
1. 杨敬伟,陈亚峰,辛向军. 融合5G技术的矿井智能巡检机器人通信系统研发. 金属矿山. 2025(02): 161-166 . 百度学术
2. 王飞. 一种用于手机定位的标识卡关键技术. 煤矿安全. 2024(04): 220-225 . 百度学术
3. 廖志伟,张建明,郭林峰,丁震,贺晓峰,吴海文. 煤矿智能化建设新型生产管控模式研究. 煤炭经济研究. 2024(04): 27-32 . 百度学术
4. 刘占中,陈善成,李慧颖. 露天矿绿色智能矿山系统建设研究. 当代化工研究. 2023(02): 185-187 . 百度学术
5. 何勇,徐元涛. 5G通信技术在智能化煤矿的应用与研究. 能源与节能. 2023(03): 167-169+173 . 百度学术
6. 种磊. 5G技术在煤矿智能化建设的应用. 陕西煤炭. 2023(02): 184-187+204 . 百度学术
7. 蔡峰,王陈书略,黄韶杰. 煤矿智能矿山自动化开采技术与应用. 内蒙古煤炭经济. 2023(02): 130-132 . 百度学术
8. 廖志伟,刘洋,单永泉,贺海成. 煤矿井下掘进工作面提高单进水平方法及路径研究. 工矿自动化. 2023(S1): 92-98 . 本站查看
9. 景杰. 5G通信技术在智能矿山中的应用. 数字技术与应用. 2022(03): 45-47 . 百度学术
10. 王雁峰. 永智煤矿运输系统智能化改造技术. 山西焦煤科技. 2022(07): 48-51 . 百度学术
11. 何勇军,易欣,王伟峰,康付如,陈炜乐,胡震. 煤矿井下电气火灾智能监控与灭火技术综述. 煤矿安全. 2022(09): 55-64 . 百度学术
12. 丁序海. 三道沟煤矿智能矿山建设实践与探索. 工矿自动化. 2022(S1): 6-10 . 本站查看
13. 杨真,贺晓峰,兰云峰,肖华明,李维,李晓围,廖志伟. 布尔台煤矿智能化建设实践及采掘工作面关键技术探索. 中国煤炭. 2021(S1): 87-96 . 百度学术
其他类型引用(2)