基于DEMATEL−ISM−BN的煤矿透水事故影响因素分析

洪伟斌, 盛武

洪伟斌,盛武. 基于DEMATEL−ISM−BN的煤矿透水事故影响因素分析[J]. 工矿自动化,2022,48(12):116-122. DOI: 10.13272/j.issn.1671-251x.2022060079
引用本文: 洪伟斌,盛武. 基于DEMATEL−ISM−BN的煤矿透水事故影响因素分析[J]. 工矿自动化,2022,48(12):116-122. DOI: 10.13272/j.issn.1671-251x.2022060079
HONG Weibin, SHENG Wu. Analysis of influencing factors of coal mine water inrush accidents based on DEMATEL-ISM-BN[J]. Journal of Mine Automation,2022,48(12):116-122. DOI: 10.13272/j.issn.1671-251x.2022060079
Citation: HONG Weibin, SHENG Wu. Analysis of influencing factors of coal mine water inrush accidents based on DEMATEL-ISM-BN[J]. Journal of Mine Automation,2022,48(12):116-122. DOI: 10.13272/j.issn.1671-251x.2022060079

基于DEMATEL−ISM−BN的煤矿透水事故影响因素分析

基金项目: 国家自然科学基金项目(71971003);安徽高校省级科学基金项目(YJS20210411);安徽省自然科学基金项目(1808085MG212)。
详细信息
    作者简介:

    洪伟斌(1999—),男,福建南安人,硕士研究生,主要研究方向为风险管控、数据分析,E-mail:827346332@qq.com

    通讯作者:

    盛武(1969—),男,安徽淮南人,副教授,硕士研究生导师,研究方向为数据分析及风险预测,E-mail:604597010@qq.com

  • 中图分类号: TD745.2

Analysis of influencing factors of coal mine water inrush accidents based on DEMATEL-ISM-BN

  • 摘要: 透水事故是继瓦斯事故和顶板事故之后的第三大煤矿事故,分析探究透水事故致因及各因素间的内在关联,可有效实现透水事故管控和遏制。现有煤矿透水事故研究大多针对某一地区或某一方面,缺少对影响因素之间复杂因果关系及各因素对事故影响程度的深入研究。针对该问题,采用决策试验和评价试验法(DEMATEL)和解释结构模型法(ISM)对煤矿透水事故影响因素进行分析,构建多级递阶结构模型,并将其映射到贝叶斯网络 (BN)模型中,得到DEMATEL−ISM−BN模型。基于数据驱动思想,对典型事故案例进行研究,确定了诱发煤矿透水事故的18个影响因素;结合专家打分结果进行DEMATEL分析,计算各因素的影响度、被影响度、原因度和中心度;根据DEMATEL分析结果计算得出ISM的可达矩阵,构建多级递阶结构模型;结合煤矿透水事故真实案例样本数据构建BN模型,利用BN模型的故障诊断功能进行致因链分析。DEMATEL分析结果表明,水害认识不足、水文地质探测不到位是煤矿透水事故发生的主要影响因素,其次是安全管理混乱和技术手段薄弱;ISM分析结果表明,三违行为和水源威胁在透水事件多级递阶结构模型中处于顶层,是诱发透水事故的直接因素;BN分析结果表明,水文地质探测不到位→水源威胁→透水事故是最可能的致因链。要有效遏制煤矿透水事故的发生,应提高员工水害意识,严格进行水文地质探测工作,从根本上杜绝生产人员的违法违规行为。
    Abstract: The water inrush accident is the third largest coal mine accident after the gas accident and the roof accident. The analysis and exploration of the causes of the water inrush accident and the intrinsic relationship between the various factors can effectively realize the control and containment of the water inrush accident. The existing coal mine water inrush accident research mostly aims at a certain area or a certain aspect. There is a lack of in-depth research on the complex causal relationship among the influence factors and the influence degree of each factor on the accident. In order to solve this problem, decision making trial and evaluation laboratory (DEMATEL) and interpretative structural modeling method (ISM) are used to analyze the influencing factors of coal mine water inrush accidents. The multi-level hierarchical structure model is constructed, which is mapped into the Bayesian network (BN) model. The DEMATEL-ISM-BN model is obtained. Based on the data-driven theory, typical accident cases are studied. There are 18 influencing factors inducing coal mine water inrush accidents determined. Based on expert scoring results, DEMATEL analysis is carried out. The influence degree, influenced degree, cause degree and centrality of each factor are calculated. The reachability matrix of ISM is calculated according to the DEMATEL analysis results. The multi-level hierarchical structure model is constructed. The BN model is constructed based on the real case data of coal mine water inrush accidents. The causal chain analysis is carried out by using the fault diagnosis function of the BN model. The results of the DEMATEL analysis show that the main factors affecting the occurrence of coal mine water inrush accidents are the lack of understanding of water disasters and inadequate hydrogeological detection. The other factors include confusion of safety management and weak technical means. ISM analysis results show that the "three violations" behavior and water source threat are at the top of the multi-level hierarchical structure model of water inrush accidents. These are the direct factors inducing water inrush accidents. The BN analysis results show that the most likely cause chain is inadequate hydrogeological detection → water source threat → water inrush accidents. To effectively curb the occurrence of coal mine water inrush accidents, it is suggested to improve the staff awareness of water disasters, strictly carry out hydrogeological exploration, and fundamentally eliminate the illegal behavior of production personnel.
  • 图  1   煤矿透水事故影响因素框架

    Figure  1.   Framework of influence factors of coal mine water inrush accidents

    图  2   煤矿透水事故影响因素多级递阶结构模型

    Figure  2.   Multi-level hierarchical structure model of influence factors of coal mine water inrush accidents

    图  3   煤矿透水事故影响因素BN模型

    Figure  3.   Bayesian network model of influence factors of coal mine water inrush accidents

    图  4   煤矿透水事故影响因素BN节点后验概率分布

    Figure  4.   Posteriori probability distribution of BN nodes of influence factors of coal mine water inrush accidents

    表  1   煤矿透水事故关键词及频次统计

    Table  1   Keywords and frequency statistics of water inrush accidents in coal mines

    关键词频次关键词频次关键词频次
    不到位51技术手段16越界开采9
    安全42巷道14教育8
    探放水33培训14安全意识8
    防治水27透水征兆13煤柱断层7
    积水23人员配备13图纸6
    管理不到位22管理混乱10非法4
    监管不落实21采空区10违章4
    违法布置
    掘进工作面
    18设备9地质4
    下载: 导出CSV

    表  2   煤矿透水事故综合影响矩阵

    Table  2   Comprehensive influence matrix of coal mine water inrush accidents

    SiSj
    S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16S17S18
    S10.050.120.040.080.050.040.050.050.050.090.090.020.030.030.080.020.080.07
    S20.150.080.080.090.110.050.090.080.080.090.070.030.040.080.070.050.090.09
    S30.180.190.080.130.140.080.110.110.100.140.090.040.060.090.100.060.110.10
    S40.150.170.160.080.210.130.180.180.180.200.150.060.120.080.110.070.120.11
    S50.200.210.180.120.130.110.210.200.200.150.210.080.120.100.100.070.130.11
    S60.130.190.130.120.180.100.200.210.180.210.200.130.180.080.110.070.130.08
    S70.050.080.070.040.130.090.070.110.110.100.160.080.100.030.030.020.040.03
    S80.050.080.060.030.130.090.110.060.100.100.150.060.070.020.030.020.040.02
    S90.060.090.070.040.130.100.120.110.070.110.160.060.070.030.060.040.050.03
    S100.150.190.100.080.140.130.200.190.180.110.190.120.160.050.100.060.100.05
    S110.080.090.070.060.120.100.140.140.140.120.090.080.100.030.040.020.090.03
    S120.100.120.070.060.170.160.150.120.120.160.200.060.160.060.080.030.150.05
    S130.080.090.050.040.140.120.160.100.090.090.170.090.060.050.060.020.050.03
    S140.190.210.190.140.220.130.170.170.160.190.150.060.080.070.150.120.140.14
    S150.200.220.180.180.220.170.190.180.180.210.180.090.120.160.090.100.170.15
    S160.210.220.190.190.220.150.190.180.180.210.190.090.120.160.140.060.190.17
    S170.150.170.160.120.210.130.180.180.180.200.150.060.120.080.110.070.080.11
    S180.190.200.170.120.130.070.120.110.110.150.090.040.060.120.130.110.120.07
    下载: 导出CSV

    表  3   煤矿透水事故影响因素的DEMATEL分析结果

    Table  3   DEMEATEL analysis results of influence factors of coal mine water inrush accidents

    影响因素影响度被影响度中心度中心度排序原因度因素属性
    三违行为S11.044 02.365 43.409 516−1.321 4结果因素
    生理心理因素S21.421 72.705 74.127 48−1.284 1结果因素
    安全风险意识差S31.891 52.050 83.942 312−0.159 4结果因素
    无证上岗S42.440 71.728 24.168 970.712 5原因因素
    水害认识不足S52.621 02.778 45.399 41−0.157 4结果因素
    技术手段薄弱S62.622 41.943 04.565 440.679 5原因因素
    巷道设计不合理S71.346 22.638 83.985 011−1.292 5结果因素
    探防排水设备不合理S81.228 92.476 63.705 414−1.247 7结果因素
    探放水系统不合理S91.400 02.414 03.813 913−1.014 0结果因素
    水文地质探测不到位S102.292 22.624 54.916 72−0.332 3结果因素
    水源威胁S111.571 32.685 34.256 56−1.114 0结果因素
    地质条件复杂S122.016 21.226 23.242 4180.789 9原因因素
    围岩情况复杂S131.499 61.779 63.279 217−0.279 9结果因素
    教育培训不到位S142.674 41.341 14.015 5101.333 3原因因素
    安全管理混乱S152.989 81.587 84.577 631.402 0原因因素
    监督体系不健全S163.052 41.014 24.066 692.038 2原因因素
    人员配备不足S172.440 71.876 14.316 850.564 6原因因素
    违法组织开采S182.122 71.439 93.562 6150.682 8原因因素
    下载: 导出CSV
  • [1] 张培森,李复兴,朱慧聪,等. 2008—2020年煤矿事故统计分析及防范对策[J]. 矿业安全与环保,2022,49(1):128-134. DOI: 10.19835/j.issn.1008-4495.2022.01.022

    ZHANG Peisen,LI Fuxing,ZHU Huicong,et al. Statistical analysis and prevention countermeasures of coal mine accidents from 2008 to 2020[J]. Mining Safety & Environmental Protection,2022,49(1):128-134. DOI: 10.19835/j.issn.1008-4495.2022.01.022

    [2] 张世龙,张民波,朱仁豪,等. 近5年我国煤矿事故特征分析及防治对策[J]. 煤炭与化工,2021,44(8):101-106,109. DOI: 10.19286/j.cnki.cci.2021.08.033

    ZHANG Shilong,ZHANG Minbo,ZHU Renhao,et al. Analysis of the characteristics of China's mine accidents in the past five years and countermeasures for prevention and control[J]. Coal and Chemical Industry,2021,44(8):101-106,109. DOI: 10.19286/j.cnki.cci.2021.08.033

    [3] 傅贵,郑志勇. 煤矿透水事故不安全动作原因分类研究[J]. 煤矿安全,2016,47(7):244-246,250. DOI: 10.13347/j.cnki.mkaq.2016.07.067

    FU Gui,ZHENG Zhiyong. Research on reasons classification for unsafe acts in coal mine water accidents[J]. Safety in Coal Mines,2016,47(7):244-246,250. DOI: 10.13347/j.cnki.mkaq.2016.07.067

    [4] 赵飞,许娜. 基于FAST法的透水事故救援产品模块化设计[J]. 包装工程,2020,41(16):141-146. DOI: 10.19554/j.cnki.1001-3563.2020.16.021

    ZHAO Fei,XU Na. Modular design of water-permeable accident rescue products based on the FAST[J]. Packaging Engineering,2020,41(16):141-146. DOI: 10.19554/j.cnki.1001-3563.2020.16.021

    [5] 周峰雷,李新春,裴丽莎. 基于遗传算法−BP神经网络的煤矿透水事故涌水量预测模型研究[J]. 煤炭技术,2015,34(11):169-170. DOI: 10.13301/j.cnki.ct.2015.11.063

    ZHOU Fenglei,LI Xinchun,PEI Lisha. Prediction model of coal mine water inflow based on GA-BP neural network[J]. Coal Technology,2015,34(11):169-170. DOI: 10.13301/j.cnki.ct.2015.11.063

    [6] 李满如. 事故树和层次分析法在煤矿透水事故分析与评价中的应用[J]. 煤炭与化工,2020,43(5):60-62,66. DOI: 10.19286/j.cnki.cci.2020.05.016

    LI Manru. Application of incident tree and hierarchical analysis method in the analysis and evaluation of mine permeability accidents[J]. Coal and Chemical Industry,2020,43(5):60-62,66. DOI: 10.19286/j.cnki.cci.2020.05.016

    [7] 张国琴. FTA和AHP综合分析在煤矿透水事故分析中的应用[J]. 现代矿业,2020,36(2):239-241. DOI: 10.3969/j.issn.1674-6082.2020.02.074

    ZHANG Guoqin. Application of comprehensive analysis of FTA and AHP in coal mine permeability accident analysis[J]. Modern Mining,2020,36(2):239-241. DOI: 10.3969/j.issn.1674-6082.2020.02.074

    [8] 陈伟,杨主张,熊威,等. 装配式建筑工程施工安全风险传导DEMATEL−BN模型[J]. 中国安全科学学报,2020,30(7):1-6. DOI: 10.16265/j.cnki.issn1003-3033.2020.07.001

    CHEN Wei,YANG Zhuzhang,XIONG Wei,et al. Research on DEMATEL-BN model of construction risk transmission for prefabricated building[J]. China Safety Science Journal,2020,30(7):1-6. DOI: 10.16265/j.cnki.issn1003-3033.2020.07.001

    [9] 王文和,朱正祥,米红甫,等. 基于DEMATEL−ISM的城市地下综合管廊火灾事故影响因素研究[J]. 安全与环境学报,2020,20(3):793-800. DOI: 10.13637/j.issn.1009-6094.2019.0092

    WANG Wenhe,ZHU Zhengxiang,MI Hongfu,et al. Pursuit and determination of the influential factors of the urban underground integrated pipe gallery fire accidents based on the DEMATEL-ISM[J]. Journal of Safety and Environment,2020,20(3):793-800. DOI: 10.13637/j.issn.1009-6094.2019.0092

    [10] 贾宝惠,史思杨,王玉鑫. 基于改进DEMATEL−ISM模型的机轮刹车系统风险因素分析[J]. 安全与环境学报,2021,21(2):506-512. DOI: 10.13637/j.issn.1009-6094.2019.0802

    JIA Baohui,SHI Siyang,WANG Yuxin. Risk factors analysis of the wheel brake system based on the improved DEMATEL-ISM[J]. Journal of Safety and Environment,2021,21(2):506-512. DOI: 10.13637/j.issn.1009-6094.2019.0802

    [11] 李广利,严一知,刘文琦,等. 基于DEMATEL−ISM的矿工不安全情绪形成因子研究[J]. 中国安全科学学报,2021,31(7):30-37. DOI: 10.16265/j.cnki.issn1003-3033.2021.07.005

    LI Guangli,YAN Yizhi,LIU Wenqi,et al. Research on formation factors of miners' unsafe emotions based on DEMATEL-ISM[J]. China Safety Science Journal,2021,31(7):30-37. DOI: 10.16265/j.cnki.issn1003-3033.2021.07.005

    [12] 申霞,夏越,杨校毅,等. 集成DEMATEL/ISM的煤矿工人违章行为影响因素研究[J]. 中国安全科学学报,2015,25(9):145-151. DOI: 10.16265/j.cnki.issn1003-3033.2015.09.024

    SHEN Xia,XIA Yue,YANG Xiaoyi,et al. DEMATEL and ISM-based study on factors influencing miners' violation behavior[J]. China Safety Science Journal,2015,25(9):145-151. DOI: 10.16265/j.cnki.issn1003-3033.2015.09.024

    [13]

    KASHYAP A,KUMAR C,KUMAR V,et al. A DEMATEL model for identifying the impediments to the implementation of circularity in the aluminum industry[J]. Decision Analytics Journal,2022:5. DOI: 10.1016/j.dajour.2022.100134.

    [14]

    LIN Feng,WU Ping,XU Yidong. Investigation of factors influencing the construction safety of high-speed railway stations based on DEMATEL and ISM[J]. Advances in Civil Engineering,2021:2021. DOI: 10.1155/2021/9954018.

    [15]

    MULHERN R,ROOSTAEI J,SCHWETSCHENAU S,et al. A new approach to a legacy concern:evaluating machine-learned Bayesian networks to predict childhood lead exposure risk from community water systems[J]. Environmental Research,2022:204. DOI: 10.1016/j.envres.2021.112146.

    [16] 于秀珍,牟瑞芳. 集成DEMATEL与ISM的铁路行车事故影响因素分析[J]. 安全与环境学报,2022,22(5):2334-2341. DOI: 10.13637/j.issn.1009-6094.2021.0659

    YU Xiuzhen,MOU Ruifang. Research on factors influencing railway accidents based on DEMATEL and ISM integrated method[J]. Journal of Safety and Environment,2022,22(5):2334-2341. DOI: 10.13637/j.issn.1009-6094.2021.0659

    [17] 刘延威,温忠党. 煤矿透水事故采取的策略分析[J]. 山东工业技术,2015(6):81. DOI: 10.16640/j.cnki.37-1222/t.2015.06.049

    LIU Yanwei,WEN Zhongdang. Analysis of the strategy adopted in coal mine flooding accident[J]. Shandong Industrial Technology,2015(6):81. DOI: 10.16640/j.cnki.37-1222/t.2015.06.049

    [18] 李文平. 试析煤矿地质与防治水工作结合的必要性[J]. 内蒙古煤炭经济,2020(8):183-184. DOI: 10.13487/j.cnki.imce.017102

    LI Wenping. Analysis on the necessity of combining coal mine geology with water control[J]. Inner Mongolia Coal Economy,2020(8):183-184. DOI: 10.13487/j.cnki.imce.017102

    [19] 郭小兵. 浅谈老空水害事故原因及防范管理对策[J]. 能源与节能,2018(10):41-42. DOI: 10.3969/j.issn.2095-0802.2018.10.019

    GUO Xiaobing. On the causes and countermeasures of the water damage accidents in old goaf[J]. Energy and Energy Conservation,2018(10):41-42. DOI: 10.3969/j.issn.2095-0802.2018.10.019

    [20] 陈亚敏. 煤矿透水的原因及其防范对策研究[J]. 化工管理,2016(3):79. DOI: 10.3969/j.issn.1008-4800.2016.03.063

    CHEN Yamin. Study on the causes of coal mine water permeability and its prevention countermeasures[J]. Chemical Enterprise Management,2016(3):79. DOI: 10.3969/j.issn.1008-4800.2016.03.063

    [21] 张宁,盛武. 基于贝叶斯网络的煤矿瓦斯爆炸事故致因分析[J]. 工矿自动化,2019,45(7):53-58. DOI: 10.13272/j.issn.1671-251x.2019010049

    ZHANG Ning,SHENG Wu. Causes analysis of coal mine gas explosion accidents based on Bayesian network[J]. Industry and Mine Automation,2019,45(7):53-58. DOI: 10.13272/j.issn.1671-251x.2019010049

  • 期刊类型引用(32)

    1. 刘战英. 矿用开关PIB综合保护器测试技术研究. 煤矿机械. 2025(02): 161-164 . 百度学术
    2. 闫建飞. 煤矿机电设备故障预测的数据挖掘方法. 能源与节能. 2025(01): 275-278 . 百度学术
    3. 曹现刚,段雍,王国法,赵江滨,任怀伟,赵福媛,杨鑫,张鑫媛,樊红卫,薛旭升,李曼. 煤矿设备全寿命周期健康管理与智能维护研究综述. 煤炭学报. 2025(01): 694-714 . 百度学术
    4. 汪学明. 矿用智能电动阀门关键技术与发展展望. 阀门. 2024(02): 224-227 . 百度学术
    5. 王磊,刘金龙,翟智哲,靳绍波. 浅谈煤矿设备安装及后期安全管理的相关问题. 中国设备工程. 2024(04): 74-76 . 百度学术
    6. 秦泽宇,王伟涛,冯银辉,崔耀,王建兵,王帅. 综采机电设备智能化管控平台研究与应用. 中国煤炭. 2024(02): 77-83 . 百度学术
    7. 梁中超. 数据集不均衡下的机电设备工作状态自动化控制系统. 自动化与仪表. 2024(03): 33-36+41 . 百度学术
    8. 敖建强. 浅谈煤矿机电设备智能化维护研究现状与发展趋势. 中国设备工程. 2024(07): 36-38 . 百度学术
    9. 贾盼盼,花洋,曾艳阳. 煤矿设备智能化管理系统研究. 大众科技. 2024(01): 19-23+38 . 百度学术
    10. 魏贺玲,王亮. 信息化时代煤矿机电设备管理策略研究. 内蒙古煤炭经济. 2024(10): 63-65 . 百度学术
    11. 刘正佳. 基于智能评估技术的煤矿机电设备健康诊断系统设计. 中国机械. 2024(17): 42-45 . 百度学术
    12. 王子玉,梁智,黄焕. 机电设备维护与故障排除技术的改进策略研究. 造纸装备及材料. 2024(06): 45-47 . 百度学术
    13. 游新冬,问英姿,佘鑫鹏,吕学强. 面向煤矿机电设备领域的三元组抽取方法. 计算机应用. 2024(07): 2026-2033 . 百度学术
    14. 谢明军,白晶,吴波,谢小飞,李婷. 基于大数据平台的神东采掘设备智能化管理研究. 能源与环保. 2024(07): 211-217 . 百度学术
    15. 张卫国. 一种煤矿安全监控系统设备故障智能诊断实现方法. 煤矿安全. 2024(08): 221-226 . 百度学术
    16. 林振格. 机电一体化设备安全管理和预防维护措施分析. 造纸装备及材料. 2024(11): 46-48 . 百度学术
    17. 赵宗国. 智能维护在现代机电系统中的实现. 电子元器件与信息技术. 2024(12): 67-69 . 百度学术
    18. 颜挺冉. 浅谈煤矿设备智能化的现状和发展趋势. 中国设备工程. 2023(04): 40-42 . 百度学术
    19. 赵东. 智能控制技术在煤矿机电设备中的应用. 科技资讯. 2023(15): 166-169 . 百度学术
    20. 左学海,张瑞平,文彪,李浩,李城磊,张虎虎. 基于PLC矿用联轴器拆卸装置液压控制系统的设计. 煤. 2023(09): 19-22 . 百度学术
    21. 陈二强. 中小型煤矿智能化建设中机电设备升级改造研究. 能源与环保. 2023(09): 237-242 . 百度学术
    22. 贾丰华. 基于博弈论—云物元模型的煤矿机电系统安全状态评价研究. 能源与环保. 2023(09): 232-236 . 百度学术
    23. 王恩标,郭娜. 煤矿机电设备维护无线检测系统的设计与实现. 中国机械. 2023(28): 26-29 . 百度学术
    24. 谢明军,白晶,郭建军,谢小飞,李婷. 神东采掘运大型机电设备使用及管理现状. 山西煤炭. 2023(04): 66-70+88 . 百度学术
    25. 马松波,周国宾. 选煤厂设备健康状态预测维护系统. 煤炭加工与综合利用. 2023(12): 46-48 . 百度学术
    26. 蒋妮娜. 主井提升机电控系统电流和速度脉动故障分析与处理. 矿山机械. 2022(07): 24-26 . 百度学术
    27. 鞠晨. 煤矿用破碎装载卧底机运行故障检测方法. 煤矿机械. 2022(11): 179-183 . 百度学术
    28. 李媛,马秀丽,杨祖业,王晶. 工业云平台在煤矿重大设备管理中的应用. 中国仪器仪表. 2022(10): 31-35 . 百度学术
    29. 李敬兆,孙杰臣. 基于二级模糊综合权重的矿井提升机运行状态评估. 煤炭技术. 2022(12): 193-196 . 百度学术
    30. 李振东. 掘进机镜面清扫装置除尘刷合理工作参数研究. 煤. 2021(10): 5-7+16 . 百度学术
    31. 郭金龙. 煤矿机电设备维修管理模式存在的问题及对策. 工程技术研究. 2021(22): 127-128 . 百度学术
    32. 宁少锋,赵建伟,白云鹏. 煤矿机电设备全生命周期管理的研究与探索. 内蒙古煤炭经济. 2021(24): 71-73 . 百度学术

    其他类型引用(6)

图(4)  /  表(3)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  54
  • PDF下载量:  20
  • 被引次数: 38
出版历程
  • 收稿日期:  2022-06-20
  • 修回日期:  2022-12-07
  • 网络出版日期:  2022-08-14
  • 刊出日期:  2022-12-26

目录

    /

    返回文章
    返回