强噪声背景与变转速工况条件下滚动轴承故障诊断研究

宫涛, 杨建华, 单振, 刘后广

宫涛,杨建华,单振,等.强噪声背景与变转速工况条件下滚动轴承故障诊断研究[J].工矿自动化,2021,47(7):63-71.. DOI: 10.13272/j.issn.1671-251x.17757
引用本文: 宫涛,杨建华,单振,等.强噪声背景与变转速工况条件下滚动轴承故障诊断研究[J].工矿自动化,2021,47(7):63-71.. DOI: 10.13272/j.issn.1671-251x.17757
GONG Tao, YANG Jianhua, SHAN Zhen, LIU Houguang. Research on rolling bearing fault diagnosis under strong noise background and variable speed working conditio[J]. Journal of Mine Automation, 2021, 47(7): 63-71. DOI: 10.13272/j.issn.1671-251x.17757
Citation: GONG Tao, YANG Jianhua, SHAN Zhen, LIU Houguang. Research on rolling bearing fault diagnosis under strong noise background and variable speed working conditio[J]. Journal of Mine Automation, 2021, 47(7): 63-71. DOI: 10.13272/j.issn.1671-251x.17757

强噪声背景与变转速工况条件下滚动轴承故障诊断研究

基金项目: 

国家自然科学基金资助项目(12072362)

详细信息
  • 中图分类号: TD633

Research on rolling bearing fault diagnosis under strong noise background and variable speed working conditio

  • 摘要: 煤矿机械设备工作环境恶劣,背景噪声强,轴承早期的故障特征信号微弱,从传感器所测得的振动信号中提取反映故障状态的信息比较困难;同时,煤矿机械设备工作在高速、冲击等工况下,是典型的非平稳工况,不稳定的激励及复杂工况直接导致提取轴承故障特征信号困难。针对以上问题,以矿井提升设备的运行工况为背景,提出了一种基于计算阶次分析与自适应随机共振的滚动轴承故障诊断方法。首先,模拟了矿井提升机运行过程中典型的变转速工况,分别构造故障仿真信号,并采集了轴承振动实验信号;其次,通过等角度采集同步时域鉴相序列,利用计算阶次分析将轴承非平稳的振动信号重采样为平稳信号;然后,利用变分模态分解(VMD)方法将平稳信号分解为若干本征模态函数(IMF)分量,通过轴承故障阶次实现对轴承故障类型的判断;最后,利用自适应随机共振方法来增强轴承故障特征阶次,从而实现故障特征的提取与增强,达到故障诊断的目的。仿真和实验结果证明了该方法的有效性。将该方法与最大相关峭度反褶积(MCKD)方法进行了对比,结果表明,MCKD方法虽然也可以观察到故障特征阶次,但是特征阶次比周围干扰阶次幅值仅高0.001 96,低于本文所提方法的结果,说明了本文所提方法具有一定的优越性。
    Abstract: The working environment of coal mine mechanical equipment is harsh, the background noise is strong, and the early fault characteristic information of the bearing is weak. Therefore, it is difficult to extract the information reflecting the fault state from the vibration signal measured by the sensor. Moreover, the coal mine mechanical equipment work in high speed, shock and other working conditions, which are typical non-stationary working conditions. The unstable excitation and complex working conditions directly lead to the difficulty of extracting the bearing fault characteristic signal. In order to solve the above problems, a rolling bearing fault diagnosis method based on computed order analysis and adaptive stochastic resonance is proposed in the background of the working conditions of mine hoisting equipment. Firstly, the method simulates the typical variable speed working conditions in the operation of mine hoist, constructs the fault simulation signals and collects the experimental signals of bearing vibration. Secondly, by collecting synchronous time-domain key-phase signal at equal angles, the non-stationary vibration signal of the bearing is resampled into a stationary signal by using computed order analysis. Thirdly, the stationary signal is decomposed into a number of intrinsic mode function (IMF) components by using the variational mode decomposition (VMD) method, and the bearing fault type is judged by the bearing fault order. Finally, the adaptive stochastic resonance method is used to enhance the bearing fault characteristic order so as to achieve the extraction and enhancement of fault characteristics for fault diagnosis. The simulation and experimental results prove the effectiveness of the method. And the method is compared with the maximum correlation kurtosis deconvolution (MCKD) method. The results show that although the MCKD method can also observe the fault characteristic order, but the characteristic order is only 0.001 96 higher than the amplitude of the surrounding interference order, which is lower than the results of the proposed method, indicating the superiority of the proposed method.
  • 期刊类型引用(16)

    1. 程刚,陈杰,潘泽烨,魏溢凡,陈森森. 基于水传热和红外热成像的煤矸识别方法. 工矿自动化. 2024(01): 66-71+137 . 本站查看
    2. 李嘉豪,司垒,王忠宾,魏东,顾进恒. 综放工作面煤矸识别技术及其应用. 仪器仪表学报. 2024(01): 1-15 . 百度学术
    3. 高琳,于鹏伟,董红娟,梁朝辉,张志远. 基于机器视觉的煤矸石识别方法综述. 科学技术与工程. 2024(26): 11039-11049 . 百度学术
    4. 冯永安,韩晓天,刘铁,吕伏. 2020–2021年陕晋冀地区五种破坏类型井下构造煤的深度学习图像数据集. 中国科学数据(中英文网络版). 2024(04): 383-390 . 百度学术
    5. 李伟,刘化广. 基于LBP算法的SVM煤矸识别. 黑龙江科技大学学报. 2023(02): 153-158+166 . 百度学术
    6. 张光磊,汪海涛,张磊. 基于虚拟现实技术的综放工作面仿真研究. 自动化技术与应用. 2023(06): 62-65+86 . 百度学术
    7. 王闰泽,郎利影,席思星. 用于智能煤矸分选机器人的改进型VGG网络煤矸识别模型. 煤炭技术. 2022(01): 237-241 . 百度学术
    8. 杨胜利 ,王家臣 ,李明 . 煤矿采场围岩智能控制技术路径与设想. 矿业科学学报. 2022(04): 403-416 . 百度学术
    9. 张红,李晨阳. 基于光学图像的煤矸石识别方法综述. 煤炭工程. 2022(07): 159-163 . 百度学术
    10. 申利飞,田子建,白林绪. 改进纹理模糊筛选下煤矸石X射线图像处理. 激光与红外. 2022(07): 1090-1097 . 百度学术
    11. 司垒,谭超,朱嘉皓,王忠宾,李嘉豪. 基于X射线图像和激光点云的煤矸识别方法. 仪器仪表学报. 2022(09): 193-205 . 百度学术
    12. 朱金波,尹建强,杨晨光,周伟,朱宏政,张勇,史苘桧,曾秋予,郭永存,杨科. 矿物组分对智能分选X射线识别规律研究. 洁净煤技术. 2021(01): 202-208 . 百度学术
    13. 胡璟皓,高妍,张红娟,靳宝全. 基于深度学习的带式输送机非煤异物识别方法. 工矿自动化. 2021(06): 57-62+90 . 本站查看
    14. 尹建强,朱金波,曾秋予,杨晨光,张勇,史苘桧. X射线煤矸识别过程中图像分割精度研究. 选煤技术. 2021(04): 24-29 . 百度学术
    15. 杜京义,史志芒,郝乐,陈瑞. 轻量化煤矸目标检测方法研究. 工矿自动化. 2021(11): 119-125 . 本站查看
    16. 李黎,熊英,荆瑞俊. 基于支持向量机的煤矸识别研究. 山西电子技术. 2021(06): 85-87 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 25
出版历程
  • 刊出日期:  2021-07-19

目录

    /

    返回文章
    返回