综放工作面智能放煤工艺研究及应用

吴桐, 尉瑞, 刘清, 魏文艳

吴桐,尉瑞,刘清,等.综放工作面智能放煤工艺研究及应用[J].工矿自动化,2021,47(3):105-111.. DOI: 10.13272/j.issn.1671-251x.2020100020
引用本文: 吴桐,尉瑞,刘清,等.综放工作面智能放煤工艺研究及应用[J].工矿自动化,2021,47(3):105-111.. DOI: 10.13272/j.issn.1671-251x.2020100020
WU Tong, YU Rui, LIU Qing, WEI Wenyan. Research and application of intelligent caving technology in fully mechanized working face[J]. Journal of Mine Automation, 2021, 47(3): 105-111. DOI: 10.13272/j.issn.1671-251x.2020100020
Citation: WU Tong, YU Rui, LIU Qing, WEI Wenyan. Research and application of intelligent caving technology in fully mechanized working face[J]. Journal of Mine Automation, 2021, 47(3): 105-111. DOI: 10.13272/j.issn.1671-251x.2020100020

综放工作面智能放煤工艺研究及应用

基金项目: 

国家重点研发计划项目(2017YFC0804304)

详细信息
  • 中图分类号: TD823

Research and application of intelligent caving technology in fully mechanized working face

  • 摘要: 传统的放顶煤控制主要依靠人工放煤控制,采用单轮顺序放煤。配有电液控制系统的工作面主要采用程序控制与人工补放结合的双轮顺序放煤方式,如果放煤控制实施不充分,会大幅降低煤炭采出率,如果放煤过程中掺有大量矸石,会降低煤炭的开采质量。针对上述问题,研究了综放工作面智能放煤工艺。分析了综放工作面自动化放煤工艺流程,指出要实现智能放煤工艺,需要在自动化放煤工艺的基础上,对综放工作面采煤机、液压支架、刮板输送机等设备进行智能升级,即在综放支架上安装音视频监视系统,监测是否有大块煤堵住放煤口、影响顶煤放出等异常情况;在后部刮板输送机安装电动机电流监测系统,实现放落煤流的自动控制,同时具备人工干预功能,即补放和停放功能;在带式输送机机尾处安装灰分检测系统对灰分是否增多进行在线分析;在综放支架上安装基于振动传感器的煤矸识别装置,根据振动传感器数据分辨矸石下落量,辨识是否有严重混矸情况。结合智能放煤工艺流程,为王家岭煤矿12309综放工作面定制了智能放煤方案:基于自动化顺序放煤与间隔放煤工艺、振动信号的煤矸识别控制和人工放落煤流控制技术实现该工作面智能化放煤,实际应用结果验证了智能放煤工艺的有效性。
    Abstract: The traditional top coal caving control mainly relies on manual coal caving control, which uses single-round of sequential coal caving. The working face equipped with electro-hydraulic control system mainly adopts the two-round sequential coal caving method combining program control and manual supplementary caving. If the implementation of coal releasing control is not sufficient, the coal recovery rate will be greatly reduced. If a large amount of gangue is mixed in the coal caving process, the coal mining quality will be significantly reduced. In order to solve the above problems, the intelligent coal caving technology in fully mechanized working face is studied. By analyzing the automatic caving process of fully mechanized working face, it is pointed out that in order to realize the intelligent caving process, it is necessary to upgrade shearer, hydraulic support, scraper conveyor and other equipment of the fully mechanized working face on the basis of the automatic caving process. By installing audio and video monitoring system on the fully mechanized caving support, it is able to monitor whether there are large pieces of coal blocking the coal caving opening, affecting the top coal caving. By installing motor current monitoring system at the rear scraper conveyor, it is able to realize automatic control of coal flow. At the same time, the system includes manual intervention functions, such as supplement and parking functions. By installing ash detection system at the end of the belt conveyor, it is able to analyze online whether the ash is increasing. By installing the vibration sensor-based coal and gangue identification device on the fully mechanized caving support, it is able to identify whether there is serious mixed gangue according to the amount of gangue falling based on the vibration sensor data. Combined with the intelligent coal caving process, the intelligent coal caving scheme is customized for the Wangjialing Coal Mine 12309 fully mechanized working face. Based on the automatic sequential coal caving and interval coal caving process, the gangue identification control of vibration signal and the manual coal caving flow control technology, the intelligent coal caving of this working face is obtained. Moreover, the actual application results have verified the effectiveness of the intelligent coal caving technology.
  • 期刊类型引用(20)

    1. 冼进,冼允廷. 基于STM32的智能家居安防系统设计. 信息技术. 2024(03): 49-55 . 百度学术
    2. 姜思嘉,盛武. 基于KPCA-BiLSTM-iForest的瓦斯体积分数异常智能识别方法. 中国安全生产科学技术. 2024(04): 42-48 . 百度学术
    3. 拓广忠,葛树峰,李荣让,谢宏坤,覃文闯,薛璐璐. 基于熵值法和DEA的电力监测异常数据自动识别算法研究. 微型电脑应用. 2023(04): 160-163+171 . 百度学术
    4. 许伟,胡婷. 基于样本数据重复性的分布式数据库自动化查询方法. 自动化技术与应用. 2023(06): 87-90 . 百度学术
    5. 严峻,马路遥,龙铭,崔北为. 基于大数据抓取的供应商不良行为数据监测方法. 微型电脑应用. 2023(06): 193-195+208 . 百度学术
    6. 芦欣,李文静. 基于萤火虫算法的软件测试用例约简方法. 计算机仿真. 2023(12): 411-415 . 百度学术
    7. 林君萍. 基于深度卷积生成对抗网络的不平衡大数据监测与诊断. 重庆科技学院学报(自然科学版). 2022(01): 99-103 . 百度学术
    8. 于楚凡,郭大亮,张秋霞,宋子涛. 基于大数据挖掘的发电系统异常数据识别系统设计. 电子设计工程. 2022(06): 131-135 . 百度学术
    9. 侯瑞丽. 基于EMMD-RVM的煤矿采矿机械设备异常检测系统. 能源与环保. 2022(05): 149-155 . 百度学术
    10. 袁丁,薛贵军,张红梅. 分布式供热管网中异常数据识别算法设计. 计算机仿真. 2022(05): 494-498 . 百度学术
    11. 赵山,苏一帆. 建筑能耗异常数据的识别算法设计与仿真. 计算机仿真. 2022(05): 499-503 . 百度学术
    12. 王浩,王亚栋,贾俊伟,史友庆,贾灿灿. 基于信息技术的煤矿综合自动化实时监测系统设计. 煤炭与化工. 2022(05): 94-97 . 百度学术
    13. 侯方迪,高卫东,张勇,翟哲,杨凡,吴亮. 电网总调调度信息披露不平衡性数据处理模型. 电子设计工程. 2022(17): 104-108 . 百度学术
    14. 戴小凤,朱卫东. 基于卷积神经网络的电力工程造价数据异常识别方法. 兰州工业学院学报. 2022(04): 62-66 . 百度学术
    15. 王昕,孙磊. 基于不平衡数据样本的工控网络态势要素提取. 长春工业大学学报. 2021(01): 40-45 . 百度学术
    16. 杨思狄,王亚玲. 面向不均衡数据集的过抽样数学模型构建. 计算机仿真. 2021(05): 472-476 . 百度学术
    17. 宋凯敏. 郭庄煤矿“四位一体”安全监测系统电路设计及管理分析. 煤矿现代化. 2021(04): 78-80 . 百度学术
    18. 冯建宇. 考虑高频数据V-I特性的电力负荷异常值自动识别系统. 机械设计与制造工程. 2021(12): 109-112 . 百度学术
    19. 李腾飞,李常友,李敬兆. 煤矿信息全面感知与智慧决策系统. 工矿自动化. 2020(03): 34-37+54 . 本站查看
    20. 陈丽芳,王荣杰,刘云庆,周旭. XmR控制图的异常点检测算法研究. 中国科学技术大学学报. 2020(08): 1110-1115+1186 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  263
  • HTML全文浏览量:  19
  • PDF下载量:  26
  • 被引次数: 24
出版历程
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回