金属矿井实时风流智能感知方法及应用

Real-time Intelligent Airflow Perception Method and Application in Metal Mines

  • 摘要: 矿井全局风流参数实时获取是金属矿井通风系统智能调控的技术关键。论文提出了一种适用于金属矿井的全局风流参数感知方法,旨在为智能控制系统发出动态调控指令提供所需要的实时风流参数。采用深度学习多层感知器算法构建矿井通风网络AI算法模型,应用矿井通风三维仿真系统模拟不同风机运行工况、不同自然风压状态下的矿井风流流动参数,建立AI算法模型的训练测试数据集,形成一种采用传感器监测数据为AI算法模型的输入数据、输出数据为全局风流参数的矿井风流参数感知方法,通过智能感知实时获取矿井全局风流参数。以某金属矿山为应用研究对象,结果表明,矿井风流参数智能感知模型具有较高的拟合优度和感知精度,其预测风流参数的决定系数(R2)为0.998,均方根误差(RMSE)为0.2159,平均绝对误差(MAE)为0.085。可见,通过为AI算法模型提供有限数量传感器的实时监测数据,可以获取可靠的矿井全局风流参数,为矿井通风系统的智能控制策略制定提供科学支持,有效解决了矿井全局风流参数实时获取的关键技术问题,对金属矿山智能通风系统的建设具有重要意义。

     

    Abstract: Real-time acquisition of global airflow parameters is a crucial technology for the intelligent control of metal mine ventilation systems. This paper presents a method for sensing global airflow parameters in metal mines, aimed at providing the real-time airflow data necessary for issuing dynamic control instructions to intelligent control systems. Utilizing deep learning with multilayer perceptron algorithms, an AI model for mine ventilation networks was constructed. The method involves applying a three-dimensional ventilation simulation system to model airflow parameters under different fan operating conditions and natural wind pressure states, thereby establishing a training and testing dataset for the AI model. This approach forms a method for sensing mine airflow parameters that uses sensor monitoring data as input for the AI model and provides global airflow parameters as output, achieving real-time intelligent perception of global airflow parameters.Using a specific metal mine as a case study, the results indicate that the intelligent sensing model for mine airflow parameters demonstrates high goodness-of-fit and sensing accuracy, with a coefficient of determination (R2) of 0.998, a root mean square error (RMSE) of 0.2159, and a mean absolute error (MAE) of 0.085. This shows that by providing real-time monitoring data from a limited number of sensors to the AI model, reliable global airflow parameters can be obtained. This supports the formulation of intelligent control strategies for mine ventilation systems, effectively addressing the key technical challenges of real-time global airflow parameter acquisition and significantly contributing to the development of intelligent ventilation systems in metal mines.

     

/

返回文章
返回