智能化技术在煤矿机电领域的应用与发展路径

李彦鹏

李彦鹏. 智能化技术在煤矿机电领域的应用与发展路径[J]. 工矿自动化, 2024, 50(S2): 205-207.
引用本文: 李彦鹏. 智能化技术在煤矿机电领域的应用与发展路径[J]. 工矿自动化, 2024, 50(S2): 205-207.
LI Yanpeng. Application and development path of intelligent technology in coal mine electromechanical field[J]. Journal of Mine Automation, 2024, 50(S2): 205-207.
Citation: LI Yanpeng. Application and development path of intelligent technology in coal mine electromechanical field[J]. Journal of Mine Automation, 2024, 50(S2): 205-207.

智能化技术在煤矿机电领域的应用与发展路径

详细信息
    作者简介:

    李彦鹏(1993—),男,山西大同人,工程师,硕士,现主要从事煤矿机电管理与智能化方面的工作,E-mail:871166701@qq.com。

  • 中图分类号: TD67

Application and development path of intelligent technology in coal mine electromechanical field

  • 摘要: 智能化技术应用于煤矿机电领域,对原有系统设备进行优化升级是智能矿山建设的关键环节。研究了智能化技术在煤矿机电领域的采煤机械自动化、煤矿运输过程、煤矿机电状态监测预警和煤矿变电站4个方面的具体应用;阐述了智能化技术推动煤矿机电领域向更高效、更安全、更环保方向发展的作用,包括提升设备利用率、降低能耗与排放、增强生产过程的自动化与智能化水平;提出了未来智能化技术在煤矿机电领域的发展路径,包括加强技术研发与创新、深化产学研合作及推动国际交流与合作等,旨在提升煤矿机电智能化技术的水平和市场竞争力,促进煤矿机电领域的可持续发展。
  • 超宽带(Ultra Wide Band,UWB)技术具有窄脉冲、高带宽、隐蔽性好、功耗低、传输速率高、多径分辨力强、穿透能力强等优点。因此,UWB技术在雷达系统、通信、军事应用等领域受到越来越多的关注。特别是自2002年美国联邦通信委员会(Federal Communications Commission,FCC)将3.1~10.6 GHz频段向民用通信领域开放以来,UWB技术越来越多地应用于矿井、隧道和室内等封闭空间定位通信等,日益展现出其优越性能[1-6]

    虽然矿井UWB定位系统因为脉冲信号占空比低而降低了码间干扰,在一定程度上提高了多径分辨能力,但井下恶劣环境使得多径效应成为了影响矿井UWB定位系统定位精度的重要因素之一。因此,矿井内狭窄封闭空间环境造成的多径效应,是矿井UWB定位系统必须解决的关键技术难题。要有效抑制多径效应,就需要对矿井UWB定位系统进行不断优化和改进,而天线是矿井UWB定位系统的重要组成部分[7],因此需要对矿井UWB定位系统的天线部分进行优化和改进。

    矿井UWB定位系统一般使用线极化天线作为收发天线,对于物理上接收到的多径反射信号隔离能力较差。圆极化波经过地面、巷道壁等多径反射后会发生旋向逆转,具有旋向正交性的圆极化天线能隔离这些旋向相反的多径反射信号。因此,在矿井UWB定位系统中使用圆极化天线可有效抑制多径效应[8]。为了抑制矿井UWB定位系统接收到多径反射信号,提高矿井UWB定位系统的定位精度,有必要研发适用于矿井UWB定位系统的圆极化天线。

    一般采用轴比和交叉极化电平分别表征圆极化天线的圆极化纯度和旋向纯度。轴比越小,则越接近标准圆极化;交叉极化电平是2个旋向增益方向图之间的差值,交叉极化电平越高,则旋向越纯净。因此,轴比越小、交叉极化电平越高,则圆极化天线对旋向相反的多径反射信号的抑制能力越强。能产生圆极化波的经典微带天线有圆形、矩形、椭圆形、开槽、扰动、切角等天线,如图1所示[9-13]

    图  1  常用的圆极化微带天线构造方式
    Figure  1.  Construction mode of commonly used circularly polarized microstrip antenna

    圆极化天线分为左旋圆极化天线和右旋圆极化天线,这2种天线对抑制矿井UWB定位系统接收多径反射信号的效果相同,本文以右旋圆极化天线为例进行分析。若采用传统的基于正面微带线馈电方式的圆形开槽贴片天线设计方法(图1(c))设计右旋圆极化微带天线,则微带线的电流辐射会对天线有较大影响,因此对馈电方式进行改进,由正面微带线直接馈电改为背部馈电。传统右旋圆极化天线结构如图2所示,天线采用3层贴片结构,50 Ω微带线位于天线背面,通过VIA孔将信号馈入天线正面圆形贴片的特定位置,微带馈线和贴片天线之间用接地平面进行隔离。通过这种方式可将馈电网络对天线辐射的影响降低到最小。

    图  2  传统右旋圆极化天线结构
    Figure  2.  Structure of conventional right-handed circularly polarized antenna

    通过HFSS软件进行仿真验证[14],可得传统右旋圆极化天线在4 GHz中心频率上E面(电面)、H面(磁面)的轴比曲线和交叉极化增益方向,分别如图3图4所示。可看出传统右旋圆极化天线虽然达到了右旋圆极化的效果,但在主辐射方向附近的轴比数值均较高,因而圆极化纯度较差;传统右旋圆极化天线在主辐射方向上的交叉极化电平仅为4.8 dBi左右,旋向纯度不高。因此,传统右旋圆极化天线在抑制多径效应上并没有很突出的优势,难以满足矿井UWB定位系统较高的抗多径效应需求。

    图  3  传统右旋圆极化天线E面、H面轴比曲线
    Figure  3.  Axial ratio curves of E-plane and H-plane of conventional right-handed circularly polarized antenna
    图  4  传统右旋圆极化天线E面、H面交叉极化增益方向
    Figure  4.  Cross-polarization gain direction of E-plane and H-plane of conventional right-handed circularly polarized antenna

    针对传统右旋圆极化天线轴比高、交叉极化电平低、旋向纯度不高等问题,本文设计了新型右旋圆极化微带天线。从传统右旋圆极化天线出发,先将矩形开槽改为十字开槽,改变电流轨迹,使两正交线性极化电场的相差更接近90°,从而降低轴比,使天线的圆极化纯度更高。之后,将十字开槽平滑扩展为菱形开槽,达到提高交叉极化电平、抑制正交旋向的效果,使天线实现更高的右旋圆极化纯度。天线演化过程如图5所示。

    图  5  天线演化过程
    Figure  5.  Antenna evolution process

    新型右旋圆极化微带天线结构如图6所示。天线制作在长为L、宽为W的3层聚四氟乙烯环氧树脂基板上,基板相对介电常数为 $ {\varepsilon _{\rm{r}}} $ ,上层基板厚度为h1,下层基板厚度为h2,顶层铜厚t1,中间层铜厚t2,底层铜厚t3,50 Ω微带线线宽为 $ \omega $ 。正面圆形贴片半径为R,馈电点位置位于圆形贴片竖直中线上距离圆心a处。菱形开槽长对角线长度为La,短对角线长度为Lb。经优化后的新型右旋圆极化微带天线参数见表1

    图  6  新型右旋圆极化微带天线结构
    Figure  6.  Structure of novel right-handed circularly polarized microstrip antenna
    表  1  新型右旋圆极化微带天线参数
    Table  1.  Parameters of novel right-handed circularly polarized microstrip antenna
    W/
    mm
    L/
    mm
    R/
    mm
    a/
    mm
    La/
    mm
    Lb/
    mm
    $ {\varepsilon _{\rm{r}}} $ h1/
    mm
    h2/
    mm
    t1/
    μm
    t2/
    μm
    t3/
    μm
    $ \omega $/
    mm
    32.7 40.6 9.3 3.4 11.2 6.44 4.2 1.58 0.4 26 16 26 0.7
    下载: 导出CSV 
    | 显示表格

    在HFSS软件中对新型右旋圆极化微带天线进行仿真模拟,得到4 GHz中心频率下的E面、H面轴比曲线,并与传统右旋圆极化天线进行对比,如图7所示。可看出新型右旋圆极化微带天线在主辐射方向附近的轴比有明显改善,其圆极化纯度得到明显提高。

    图  7  新型右旋圆极化微带天线和传统右旋圆极化天线E面、H面轴比曲线
    Figure  7.  Axial ratio curves of E-plane and H-plane of novel right-handed circularly polarized microstrip antenna and conventional right-handed circularly polarized antenna

    新型右旋圆极化微带天线仿真模拟得到的E面、H面交叉极化增益方向如图8所示。可看出在主辐射方向上,新型右旋圆极化微带天线的交叉极化电平增加到了10.4 dBi以上,和传统右旋圆极化天线4.8 dBi的交叉极化电平相比有显著改善,大幅提高了右旋圆极化旋向纯度。

    图  8  新型右旋圆极化微带天线E面、H面交叉极化增益方向
    Figure  8.  Cross-polarization gain direction of E-plane and H-plane of novel right-handed circularly polarized microstrip antenna

    向新型右旋圆极化微带天线正面(即逆着主辐射方向)看去,在1个信号变化周期中辐射电场极化旋转方向的变化如图9所示,可以很直观地看到电场右旋圆极化的动态效果。

    图  9  新型右旋圆极化微带天线辐射电场的极化旋转效果
    Figure  9.  Polarization rotation effect of radiated electric field of novel right-handed circularly polarized microstrip antenna

    根据表1参数进行实际加工,制成的新型右旋圆极化微带天线样品实物如图10所示。在加工过程中,加工误差、介质基板相对介电常数等都会影响实际样品的性能[15]。用矢量网络分析仪对天线的端口回波性能进行测试,将得到的实测曲线和HFSS软件得到的仿真曲线进行对比,如图11所示。可看出实测的工作频带和回波同仿真结果略有偏差,但整体基本相当,说明该新型天线结构易于加工且正常容差内的工艺偏差对天线性能的影响程度相对较小。

    图  10  新型右旋圆极化微带天线实物
    Figure  10.  Material object of novel right-handed circularly polarized microstrip antenna
    图  11  仿真和实测回波曲线对比
    Figure  11.  Comparison between simulated and measured echo curves

    在基于到达相位差[16]的UWB定位系统中,分别使用传统线极化天线和本文设计的新型右旋圆极化微带天线,在隧道环境下进行实地测试,现场测试环境如图12所示。

    图  12  隧道实地测试环境
    Figure  12.  Tunnel field test environment

    通过测试过程中记录的数据,可直观看到不同类型天线对于到达相位差稳定性的影响,如图13所示。可看出使用传统线极化天线时,到达相位差正负跳变频繁,很不稳定;而使用本文设计的新型右旋圆极化微带天线后,到达相位差正负跳变明显减少,到达相位差的稳定性有明显提高。这充分表明新型圆极化微带天线对隧道环境中的多径效应起到了显著的抑制作用,有效提高了接收信号的稳定性。

    图  13  使用传统线极化天线和新型右旋圆极化微带天线时到达相位差对比曲线
    Figure  13.  Comparison curves of phase difference of arrival when using conventional linearly polarized antenna and novel right-handed circularly polarized microstrip antenna

    通过对传统圆极化天线的结构改进,设计了一种新型右旋圆极化微带天线,通过优化开槽和馈电方式实现了轴比的大幅度降低和交叉极化电平的显著提高。该新型右旋圆极化微带天线具有体积小、质量轻、易于制作等优点。经过HFSS软件仿真模拟,主辐射方向交叉极化电平>10.4 dBi,可以达到很好的右旋圆极化效果。新型右旋圆极化微带天线样品的工作频带和回波实测结果同仿真结果基本吻合,受工艺偏差影响小。将制作的新型右旋圆极化微带天线样品用于基于到达相位差的UWB定位系统,并在隧道环境下进行现场测试,实测得到的到达相位差稳定性有明显改善,对多径效应的抑制效果显著,可以有效提高UWB定位系统的定位精度。

  • [1] 杨鹏.分析煤矿机电设备健康智能化管理系统关键技术[J].内蒙古煤炭经济,2022(3):136-138.
    [2] 王博沙.人工智能技术在煤矿机电设备中的应用研究[J].产业科技创新,2024,6(2):117-120.
    [3] 邵华一,陈会利.人工智能在煤矿机电自动化控制中的应用与发展趋势[J].信息系统工程,2024(9):56-58.
    [4] 张亚圣.自动化技术在煤矿机电设备中的应用探讨[J].能源与节能,2023(11):162-164.
    [5] 黄伟.自动化在煤矿机电工程技术中的创新应用[J].自动化应用,2024,65(增刊1):285-287.
    [6] 段铭钰.煤矿机电自动化技术的创新应用研究[J].内蒙古煤炭经济,2022(14):18-20.
  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-10-24

目录

/

返回文章
返回