基于双目视觉的选煤厂用胶带输送机表面异物检测
Surface foreign object detection of belt conveyor used in coal preparation plant based on binocular vision
-
摘要: 目前所采用的选煤厂用胶带输送机表面异物检测方法在实际应用时,由于选煤厂内外因素影响,导致对于不同类别的异物识别和分类精度低。针对该问题,提出一种基于双目视觉的选煤厂用胶带输送机表面异物检测方法。设计了基于双目视觉的输送带异物检测装置,将摄像机与工业相机组合成双目视觉系统,系统采集图像后,利用中值滤波算法对图像进行去噪,获取稳定的图像信息。采用YOLOv3进行异物识别预测,计算边界框和锚框数值信息,并根据上述数值信息调整计算定位准确度,实现异物检测。实验结果表明:与传统的基于Mask_R-CN的检测方法相比,提出的方法对胶带输送机表面异物的识别筛选准确率超过96.2%,分类准确率超过97.6%。