急倾斜中厚煤层双斜开采顶板垮落堆积与应力演化特征

伍永平, 许英瑞, 解盘石, 王红伟, 郎丁, 皇甫靖宇, 强旭博, 杜玉乾, 王乐辰, 茹笑辉, 王正富

伍永平,许英瑞,解盘石,等. 急倾斜中厚煤层双斜开采顶板垮落堆积与应力演化特征[J]. 工矿自动化,2024,50(12):18-26, 75. DOI: 10.13272/j.issn.1671-251x.2024110055
引用本文: 伍永平,许英瑞,解盘石,等. 急倾斜中厚煤层双斜开采顶板垮落堆积与应力演化特征[J]. 工矿自动化,2024,50(12):18-26, 75. DOI: 10.13272/j.issn.1671-251x.2024110055
WU Yongping, XU Yingrui, XIE Panshi, et al. Roof collapse accumulation and stress evolution characteristics of double-inclined mining in steeply inclined medium-thick coal seam[J]. Journal of Mine Automation,2024,50(12):18-26, 75. DOI: 10.13272/j.issn.1671-251x.2024110055
Citation: WU Yongping, XU Yingrui, XIE Panshi, et al. Roof collapse accumulation and stress evolution characteristics of double-inclined mining in steeply inclined medium-thick coal seam[J]. Journal of Mine Automation,2024,50(12):18-26, 75. DOI: 10.13272/j.issn.1671-251x.2024110055

急倾斜中厚煤层双斜开采顶板垮落堆积与应力演化特征

基金项目: 国家自然科学基金面上项目(52174126,51974230)。
详细信息
    作者简介:

    伍永平(1962—),男,陕西汉中人,教授,博士研究生导师,博士,主要研究方向为大倾角煤层安全高效开采,E-mail:wuyp@xust.edu.cn

    通讯作者:

    许英瑞(2000—),男,内蒙古兴安盟人,硕士研究生,主要研究方向为急倾斜中厚煤层开采,E-mail:2474363015@qq.com

  • 中图分类号: TD323

Roof collapse accumulation and stress evolution characteristics of double-inclined mining in steeply inclined medium-thick coal seam

  • 摘要:

    俯伪斜开采降低工作面倾角能力有限,倾角60°以上急倾斜中厚煤层长壁综合机械化开采方法亟待突破。以华蓥山煤业股份有限公司绿水洞煤矿3212工作面为工程背景,在俯伪斜开采的基础上提出了双斜开采的采煤方法,并采用物理相似模拟、数值模拟等方法,分析了双斜开采顶板破断矸石充填滑移堆积规律及应力演化过程。结果表明:双斜开采工作面布置需要与矿井开采设计相协调,工作面两巷维护难度大,其中回风巷侧受采动应力影响大,而运输巷与工作面支架的协调配合难度大;双斜开采由于其异形采空区顶板结构,垮落步距更大,其矸石垮落堆积呈倒三角形且存在周期性滑移特征,并且由于大块矸石堆积造成工作面上部和中部的非均匀来压现象;双斜开采原岩应力随工作面的推进逐渐增大,工作面倾斜上部、中部、下部来压强度不同,一般倾斜中上部来压大于下部,但倾斜下部支承压力应力集中系数大于工作面中上部,双斜开采顶板应力演化特征受工作面形状和推进距离的影响,并由于巷道调斜角作用,应力释放范围呈现由倾斜上部至下部逐渐变小的非对称特征。

    Abstract:

    The pseudo-inclined mining has limited capacity to reduce the inclination angle of working face, necessitating breakthroughs in longwall comprehensive mechanized mining methods for steeply inclined medium-thick coal seam with inclination angles exceeding 60°. Taking the 3212 working face in the Lüshuidong Coal Mine of Huayingshan Coal Industry Co., Ltd. as the engineering background, a double-inclined mining method was proposed based on pseudo-inclined mining. Physical similarity simulation and numerical simulation were employed to analyze the movement and accumulation patterns and stress evolution of the gangue filling after roof breaking in double-inclined mining. The results showed that the layout of the double-inclined working face needed to be coordinated with the mine’s mining design, and the maintenance of two roadways of the working face was challenging. The return air roadway side was significantly affected by the mining stress, while coordinating the transportation roadway with the working face support was also difficult. Due to the irregularly shaped goaf roof structure, the double-inclined mining had larger collapse steps, and its gangue collapse accumulation formed an inverted triangular pattern with periodic sliding characteristics. The accumulation of large gangue blocks resulted in non-uniform pressure in the upper and middle sections of the working face. In double-inclined mining, the original rock stress increased gradually with the advancing distances of the working face, with varying pressure intensities in the upper, middle, and lower inclined sections of the working face. Generally, the upper and middle sections experienced greater pressure than the lower section, but the stress concentration factor of the support pressure was higher in the lower inclined section compared to that in the upper and middle sections of the working face. The stress evolution characteristics of the roof in double-inclined mining were influenced by the working face shape and advancing distance. Additionally, the roadway inclination angle adjustment caused the range of stress release to decrease asymmetrically from the upper to the lower inclined sections.

  • 图  1   煤层综合柱状图

    Figure  1.   Comprehensive stratigraphic column of coal seam

    图  2   俯伪斜开采和双斜开采对比

    Figure  2.   Comparison between pseudo-inclined mining and double-inclined mining

    图  3   倾斜上山布置

    Figure  3.   Layout of inclined upward mining

    图  4   垂直上山布置

    Figure  4.   Layout of vertical upward mining

    图  5   大型三维变角度物理相似材料模拟台

    Figure  5.   Large three-dimensional variable-angle physical similarity material simulation platform

    图  6   可旋转圆盘及配套设备

    Figure  6.   Rotating disc and supporting equipment

    图  7   模拟台铺装完成效果

    Figure  7.   Final setup of simulation platform

    图  8   推进50 cm时倾斜下部矸石充填效果

    Figure  8.   Gangue filling effect of lower inclined section at 50 cm advancing distance

    图  9   不同推进距离下倾斜上部支承压力

    Figure  9.   Support pressure in the upper inclined section at different advancing distances

    图  10   推进80 cm时倾斜上部矸石充填效果

    Figure  10.   Gangue filling effect of upper inclined section at 80 cm advancing distance

    图  11   基本顶裂隙发育

    Figure  11.   Basic roof fracture development

    图  12   双斜开采矸石充填演化特征

    Figure  12.   Evolution characteristics of gangue filling in double-inclined mining

    图  13   数值计算模型

    Figure  13.   Numerical calculation model

    图  14   不同推进距离下支承压力演化特征

    Figure  14.   Evolution characteristics of support pressure at different advancing distances

    图  15   不同推进距离下基本顶垂直应力

    Figure  15.   Vertical stress of basic roof at different advancing distances

    表  1   数值计算模型煤岩体物理力学参数

    Table  1   Physical and mechanical parameters of coal and rock mass in numerical calculation model

    岩层名称密度/(kg·m-3体积模量/MPa剪切模量/MPa抗拉强度/MPa黏聚力/MPa内摩擦角/(°)
    底板2 6003.373.801.702.6036.9
    直接底2 1002.651.801.401.1028.3
    煤层1 7001.670.540.421.1527.6
    伪顶2 6501.730.801.002.2036.9
    直接顶2 4302.051.001.513.8031.1
    基本顶2 6003.503.301.602.3028.3
    覆岩2 6504.012.101.502.2036.9
    下载: 导出CSV
  • [1] 伍永平,郎丁,贠东风,等. 我国大倾角煤层开采技术变革与展望[J]. 煤炭科学技术,2024,52(1):25-51. DOI: 10.12438/cst.2023-1601

    WU Yongping,LANG Ding,YUN Dongfeng,et al. Reform and prospects of mining technology for large inclined coal seam in China[J]. Coal Science and Technology,2024,52(1):25-51. DOI: 10.12438/cst.2023-1601

    [2]

    WU Yongping,XIE Panshi,YUN Dongfeng,et al. Theory and practice of fully mechanized longwall mining in steeply dipping coal seams[J]. Mining Engineering,2013,65(1):35-41.

    [3] 张百川,丁伯坤,王承玉. 急倾斜煤层斜台阶采煤法[J]. 煤炭科学技术,1987,15(6):2-5,61-62.

    ZHANG Baichuan,DING Bokun,WANG Chengyu. Diagonal bench mining of steep coal seams[J]. Coal Science and Technology,1987,15(6):2-5,61-62.

    [4] 杜计平,孟宪锐. 采矿学[M]. 2版. 徐州:中国矿业大学出版社,2014.

    DU Jiping,MENG Xianrui. Mining science[M]. 2nd ed. Xuzhou:China University of Mining & Technology Press,2014.

    [5] PENG S S. 长壁开采[M]. 郭文兵,译. 2版. 北京:科学出版社,2011.

    PENG S S. Longwall mining[M]. Guo Wenbing,trans. 2nd ed. Beijing:Science Press,2011.

    [6] 楼建国,李维光. 四川矿区大倾角薄及中厚煤层高效采煤方法[J]. 煤炭科学技术,2003,31(9):1-4. DOI: 10.3969/j.issn.0253-2336.2003.09.001

    LOU Jianguo,LI Weiguang. High efficient coal mining methods for deep inclined thin seam and medium thick seam in Sichuan Mining Area[J]. Coal Science and Technology,2003,31(9):1-4. DOI: 10.3969/j.issn.0253-2336.2003.09.001

    [7] 陈明武. 走向伪俯斜长壁分段密集掩护采煤法中近走向分段密集布置参数的探讨[J]. 煤炭技术,1999,18(3):18-20. DOI: 10.3969/j.issn.1008-8725.1999.03.010

    CHEN Mingwu. Research on the parameter of sublevel concentrated arrangement on near strike in oblique longwall sublevel concentrated shield coal mining[J]. Coal Technology,1999,18(3):18-20. DOI: 10.3969/j.issn.1008-8725.1999.03.010

    [8] 王家臣,杨胜利,唐岳松,等. 急倾斜煤层采区伪俯斜布置的开采系统及开采方法:CN112483091B[P]. 2022-03-15.

    WANG Jiachen,YANG Shengli,TANG Yuesong,et al. The mining system and mining method of pseudo-incline layout in mining area of steep coal seam:CN112483091B[P]. 2022-03-15.

    [9] 王家臣,杨胜利,刘淑琴,等. 急倾斜煤层开采技术现状与流态化开采构想[J]. 煤炭科学技术,2022,50(1):48-59. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201003

    WANG Jiachen,YANG Shengli,LIU Shuqin,et al. Technology status and fluidized mining conception for steeply inclined coal seams[J]. Coal Science and Technology,2022,50(1):48-59. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201003

    [10] 王爱龙. 双斜大倾角综放面顶煤运移特征及围岩稳定性控制机理[D]. 徐州:中国矿业大学,2019.

    WANG Ailong. Top coal migration characteristics and surrounding rock stability control mechanism in fully mechanized top coal caving face with double dip angle[D]. Xuzhou:China University of Mining and Technology,2019.

    [11] 陆伟,杨科,杨晓杰,等. 大倾角三软厚煤层综采工作面旋转开采技术[J]. 煤炭科学技术,2014,42(7):18-21,25.

    LU Wei,YANG Ke,YANG Xiaojie,et al. Rotary mining technology of fully-mechanized coal mining face in deep inclined thick seam with soft roof,soft coal and soft floor[J]. Coal Science and Technology,2014,42(7):18-21,25.

    [12]

    YANG Ke,FU Qiang,LIU Qinjie,et al. Evolution of mining-induced stress in downward mining of short-distance multiseam[J]. Geofluids,2022. DOI: 10.1155/2022/3305734.

    [13]

    CHENG Guanwen,YANG Tianhong,LIU Hongyuan,et al. Characteristics of stratum movement induced by downward longwall mining activities in middle-distance multi-seam[J]. International Journal of Rock Mechanics and Mining Sciences,2020,136. DOI: 10.1016/j.ijrmms.2020.104517.

    [14] 陆菜平,张修峰,肖自义,等. 褶皱构造对深井采动应力演化的控制规律研究[J]. 煤炭科学技术,2020,48(2):44-50.

    LU Caiping,ZHANG Xiufeng,XIAO Ziyi,et al. Study on controlling law of fold structure on evolution of mining stress in deep mines[J]. Coal Science and Technology,2020,48(2):44-50.

    [15] 伍永平,解盘石,贠东风,等. 大倾角层状采动煤岩体重力−倾角效应与岩层控制[J]. 煤炭学报,2023,48(1):100-113.

    WU Yongping,XIE Panshi,YUN Dongfeng,et al. Gravity-dip effect and strata control in mining of the steeply dipping coal seam[J]. Journal of China Coal Society,2023,48(1):100-113.

    [16] 伍永平,胡博胜,解盘石,等. 大倾角工作面飞矸冲击损害及其控制[J]. 煤炭学报,2018,43(10):2694-2702.

    WU Yongping,HU Bosheng,XIE Panshi,et al. Impact damage of flying gangue in steeply dipping seams and its control[J]. Journal of China Coal Society,2018,43(10):2694-2702.

    [17] 伍永平,胡博胜,王红伟,等. 大倾角煤层长壁开采工作面飞矸致灾机理研究[J]. 煤炭学报,2017,42(9):2226-2234.

    WU Yongping,HU Bosheng,WANG Hongwei,et al. Mechanism of flying gangue-caused disasters in longwall mining of steeply dipping seam[J]. Journal of China Coal Society,2017,42(9):2226-2234.

    [18] 伍永平,胡涛,胡博胜,等. 大倾角煤层俯伪斜工作面液压支架设计系统实用性分析[J]. 煤炭科学技术,2024,52(7):187-198. DOI: 10.12438/cst.2023-1451

    WU Yongping,HU Tao,HU Bosheng,et al. Practicability analysis of hydraulic support design system for steeply dipping coal seam inclined pseudo inclined working face[J]. Coal Science and Technology,2024,52(7):187-198. DOI: 10.12438/cst.2023-1451

    [19] 罗生虎,伍永平,解盘石,等. 大倾角煤层走向长壁开采支架稳定性力学分析[J]. 煤炭学报,2019,44(9):2664-2672.

    LUO Shenghu,WU Yongping,XIE Panshi,et al. Mechanical analysis of support stability in longwall mining of steeply dipping seam[J]. Journal of China Coal Society,2019,44(9):2664-2672.

    [20] 伍永平,杨玉冰,王同,等. 大倾角走向长壁伪俯斜采场支架稳定性分析[J]. 煤炭科学技术,2022,50(1):60-69. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201004

    WU Yongping,YANG Yubing,WANG Tong,et al. Stability analysis of support under gangue filling condition in pitching oblique mining area of steeply dipping seam[J]. Coal Science and Technology,2022,50(1):60-69. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201004

    [21] 解盘石,黄宝发,伍永平,等. 大倾角煤层伪俯斜采场围岩运移与支架相互作用规律研究[J]. 中国矿业大学学报,2024,53(4):664-679.

    XIE Panshi,HUANG Baofa,WU Yongping,et al. Study on the interaction between strata movement and support in pitching oblique mining area of steeply dipping seam[J]. Journal of China University of Mining & Technology,2024,53(4):664-679.

图(15)  /  表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  12
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-17
  • 修回日期:  2024-12-26
  • 网络出版日期:  2024-12-10
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回