一种半监督支持向量机优化方法

An Optimized Method for Semi-supervised Support Vector Machines

  • 摘要: 针对半监督支持向量机在采用间隔最大化思想对有标签样本和无标签样本进行分类时面临的非凸优化问题,提出了一种采用分布估计算法进行半监督支持向量机优化的方法EDA_S3VM。该方法把无标签样本的标签作为需要优化的参数,从而得到一个在标准支持向量机上的组合优化问题,利用分布估计算法通过概率模型的学习和采样来对问题进行求解。在人工数据集和公共数据集上的实验结果表明,EDA_S3VM与其它一些半监督支持向量机算法相比有更高的分类准确率。

     

    Abstract: In view of problem of non-convex optimization problem that semi-supervised support vector machines use margin maximization principle to classify labeled and unlabeled samples, a method EDA_S3VM was proposed which using estimation of distribution algorithm to optimize semi-supervised support vector machines. Labels of unlabeled samples are taken as optimized parameters to obtain a combinatorial optimization problem on standard support vector machines, which can be solved by estimation of distribution algorithm through learning and sampling of probability model. The experiment results of artificial and UCI datasets showed that EDA_S3VM has better classification accuracy than other methods of semi-supervised support vector machines.

     

/

返回文章
返回