尾矿库及灰场排洪方案设计

程琨, 罗伟, 蓝苹瑕, 廖南京

程琨, 罗伟, 蓝苹瑕, 廖南京. 尾矿库及灰场排洪方案设计[J]. 工矿自动化, 2024, 50(S2): 79-81.
引用本文: 程琨, 罗伟, 蓝苹瑕, 廖南京. 尾矿库及灰场排洪方案设计[J]. 工矿自动化, 2024, 50(S2): 79-81.
CHENG Kun, LUO Wei, LAN Pingxia, LIAO Nanjing. Design of flood discharge scheme for tailings pond and ash field[J]. Journal of Mine Automation, 2024, 50(S2): 79-81.
Citation: CHENG Kun, LUO Wei, LAN Pingxia, LIAO Nanjing. Design of flood discharge scheme for tailings pond and ash field[J]. Journal of Mine Automation, 2024, 50(S2): 79-81.

尾矿库及灰场排洪方案设计

详细信息
    作者简介:

    程琨(1977—),男,浙江绍兴人,高级工程师,研究方向为热能与动力工程,E-mail:1834554287@qq.com。

  • 中图分类号: TD67

Design of flood discharge scheme for tailings pond and ash field

  • 摘要: 从排洪监控系统、排洪系统、封堵方法3个方面介绍尾矿库及灰场排洪方案,重点介绍了排洪监控系统设计方法和封堵数值计算方式。尾矿库及灰场排洪监控系统主要由库区坝体位移监测系统、坝体浸润线监测系统、干滩监测系统、降雨量监测系统、视频监控系统等5个子系统组成。以某尾矿库为例,利用排水井-隧道的方式设计了排洪系统。介绍了封堵位置确定、封堵长度估算、封堵体结构类型选择等,为尾矿库和灰场的排洪治理提供参考。
  • 锚杆钻车是矿井巷道作业主力装备之一,在矿井巷道掘进和锚固支护方面发挥着重要作用。我国钻机整体技术水平比较落后,存在定位精度低、定位速度慢等问题,严重制约巷道施工效率。研究锚杆钻车钻臂的自动精准定位问题,对实现矿用生产装备智能化、提高巷道施工效率有重要意义。

    锚杆钻车钻臂为冗余多自由度结构,可保障作业的灵活性,但自由度的增加导致逆运动学求解复杂,降低了求解效率和精度。目前常用代数法和几何法求解机械臂运动学问题。代数法根据逆矩阵变换构建钻臂各关节变量与目标位姿之间的函数,但效率低,且存在无解或多解情况。几何法效率高,但对于不同的对象需构造不同的求解模型,通用性差。针对上述问题,许多学者将智能算法用于机械臂定位控制研究,如:李国江等[1]使用多群协同进化方法补偿绳索牵引并联机器人末端定位偏差;吉阳珍等[2]将改进的鲸鱼优化算法用于机械臂逆运动学求解,提高了求解精度和稳定性。在各种智能算法中,粒子群优化(Particle Swarm Optimization,PSO)算法用于求解机械臂运动学问题时具有编程简单、易于计算机实现、搜索性能强、容错性优等优点,有利于钻臂定位控制的稳定性。但PSO算法易陷入局部最优解,求解性能欠佳。对此,学者对PSO算法进行了改进,如:史也等[3]提出了一种基于量子PSO(Quantum-behaved PSO,QPSO)算法的路径规划方法,通过规划机械臂关节角的运动,使基座姿态和机械臂末端姿态同时达到期望状态;刘洋[4]通过多目标PSO(Multiple Objective PSO,MOPSO)算法实现了机器人位姿精准控制。上述算法应用于机械臂运动学求解时未考虑粒子初始位置状态,导致粒子初始状态不佳,且粒子间信息交流不充分,个体和全局最优粒子易陷入局部最优而无法跳出,使得算法整体寻优效率较低,寻优时间过长。

    本文在精英反向PSO(Elite Opposition-based PSO,EOPSO)算法基础上进行改进,提出混沌交叉精英变异反向PSO(Chaotic Crossover Elite Mutation Opposition-based PSO,CEMOPSO)算法,并将其用于锚杆钻车钻臂定位控制,提高了钻臂逆向运动学求解的速度和精度,实现了锚杆钻车钻臂精准定位。

    锚杆钻车钻臂为八自由度机构,含6个回转关节(大臂摇摆关节、大臂俯仰关节、推进梁俯仰关节、推进梁摆动关节、推进梁回转关节、锚杆关节)和2个移动关节(大臂伸缩关节、推进梁伸缩关节),如图1所示。

    图  1  锚杆钻车钻臂结构
    1−大臂摇摆关节;2−大臂俯仰关节;3−大臂伸缩关节;4−推进梁俯仰关节;5−推进梁摆动关节;6−推进梁回转关节;7−锚杆关节;8−推进梁伸缩关节。
    Figure  1.  Drilling arm structure of bolt drilling rig

    为简化钻臂坐标系的建立,分析钻臂基座到钻臂末端变换关系,利用D−H建立钻臂正向运动学模型[5-9]。钻臂坐标系如图2所示,o0x0y0z0为基坐标系,oixiyizi(i=1,2,…,8)分别为大臂摇摆关节坐标系、大臂俯仰关节坐标系、大臂伸缩关节坐标系、推进梁俯仰关节坐标系、推进梁摆动关节坐标系、推进梁回转关节坐标系、锚杆关节坐标系和推进梁伸缩关节坐标系。

    图  2  锚杆钻车钻臂坐标系
    Figure  2.  Coordinates of drilling arm of bolt drilling rig

    根据D−H法,相邻2个关节坐标系之间的变换矩阵为

    $$ \begin{split} {\boldsymbol{T}}_j^{j - 1} = \left[ {\begin{array}{*{20}{c}} {\cos \ {\theta _{ j}}}& { - \cos \ {\alpha _{ j}}\sin \ {\theta _{ j}}}& {\sin \ {\alpha _{ j}}\sin \ {\theta _{ j}}}& {{a_j}\cos \ {\theta _{ j}}} \\ {\sin \ {\theta _{ j}}}& {\cos \ {\theta _{ j}}\sin \ {\alpha _{ j}}}& { - \cos \ {\theta _{ j}}\sin \ {\alpha _{ j}}}& {{a_j}\sin \ {\theta _{ j}}} \\ 0& {\sin \ {\alpha _{ j}}}& {\cos \ {\alpha _{ j}}}& {{d_j}} \\ 0& 0& 0& 1 \end{array}} \right] \end{split} $$ (1)

    式中:θj为关节j的关节角;αj为关节j所在杆件的扭转角;aj为关节j所在杆件长度;dj为关节j横距。

    锚杆钻车钻臂的D−H参数见表1

    表  1  锚杆钻车钻臂D−H参数
    Table  1.  D-H parameters of drilling arm of bolt drilling rig
    关节$ {\theta _j}/(^\circ ) $$ {\alpha _j}/(^\circ ) $$ {a_j}/{\rm{m}} $$ {d_j}/{\rm{m}} $
    1[45,135]900.300
    2[−150,−60]−9000
    3180−900[0,1.8]
    4[−120,−30]−900.350
    5[−135,−45]9000
    6[−270,90]−900.600.4
    7[−90,0]9000.8
    890−900[0,2.5]
    下载: 导出CSV 
    | 显示表格

    表1数据代入式(1),可得相邻2个关节坐标系之间的变换矩阵。由左乘法则联立各变换矩阵,得到钻臂末端(推进梁伸缩关节)坐标系相对基坐标系的位姿矩阵:

    $$ {\boldsymbol{T}}_8^0 = {\boldsymbol{T}}_1^0{\boldsymbol{T}}_2^1{\boldsymbol{T}}_3^2{\boldsymbol{T}}_4^3{\boldsymbol{T}}_5^4{\boldsymbol{T}}_6^5{\boldsymbol{T}}_7^6{\boldsymbol{T}}_8^7 = \left[ {\begin{array}{*{20}{c}} {{N_x}}&{{O_x}}&{{A_x}}&{{L_x}} \\ {{N_y}}&{{O_y}}&{{A_y}}&{{L_y}} \\ {{N_{\textit{z}}}}&{{O_{\textit{z}}}}&{{A_{\textit{z}}}}&{{L_{\textit{z}}}} \\ 0&0&0&1 \end{array}} \right] $$ (2)

    式中:$ {[{N_x},{N_y},{N_{\textit{z}}}]^{\rm{T}}} $$ {[{O_x},{O_y},{O_{\textit{z}}}]^{\rm{T}}} $$ {[{A_x},{A_y},{A_{\textit{z}}}]^{\rm{T}}} $分别为钻臂末端的法向向量、滑动向量和接近向量;$ [{L_x}, {L_y},{L_{\textit{z}}}]^{\rm{T}} $为钻臂末端相对于基坐标系的位置向量。

    采用PSO算法对锚杆钻车钻臂进行逆运动求解时,适应度函数为钻臂末端位姿与目标位姿的误差分析函数,即

    $$ h({{\boldsymbol{X}}_i}) = \left\| {{\boldsymbol{P}}({{\boldsymbol{X}}_{\text{i}}}) - {{\boldsymbol{P}}_{{\rm{obj}}}}} \right\| $$ (3)

    式中:$ h( \cdot ) $为适应度函数;Xi为粒子i位置;P(Xi)为粒子i在位置Xi时的钻臂末端位姿;Pobj为钻臂末端目标位姿。

    迭代时,设粒子i当前最优位置Xibest=(ei1ei2,…,eiD),eiD为粒子iD维空间的当前最优位置,全局最优位置Xgbest=(eg1eg2,…,egD),egDD维空间的全局最优位置。粒子i的速度和位置更新公式为

    $$ \begin{split} {{\boldsymbol{V}}_i}(t + 1) = & \omega {{\boldsymbol{V}}_i}(t) + {c_1}{r_1}({{\boldsymbol{X}}_{i{\rm{best}}}} - {{\boldsymbol{X}}_i}(t)) + {c_2}{r_2}\left( { {{\boldsymbol{X}}{\boldsymbol{}}_{{\rm{gbest}}}} - {{\boldsymbol{X}}_i}(t) } \right) \end{split} $$ (4)
    $$ {{\boldsymbol{X}}_i}(t + 1) = {{\boldsymbol{X}}_i}(t) + {{\boldsymbol{V}}_i}(t + 1) $$ (5)

    式中:ω为惯性权重;Vit)为第t次迭代时粒子i的速度;c1c2为学习因子;r1r2为[0,1]的随机数;Xit)为第t次迭代时粒子i的位置。

    EOPSO算法在PSO算法基础上,对群体内的最优粒子(即精英个体)进行反向学习,增加搜索的目的性,尽可能避免搜索的盲目性,从而以最快速度得到最优解。但该算法存在种群内粒子间信息交流不充分、易局部最优、收敛性差等问题[5-7]。因此,将混沌初始化、交叉操作、变异操作和极值扰动引入EOPSO算法,提出CEMOPSO算法。

    1) 混沌初始化。通过混沌映射空间对粒子群位置信息进行初始化,在不改变初始种群随机性的条件下,使得种群初始位置均匀分布在可行域内,提高种群初期多样性。

    采用Logistic和Sinusoidal的复合混沌模型[10-12](式(6)),使粒子在设定空间内呈现混沌状态。

    $$ {\varphi _{n + 1}} = 4\sin \; ({\text{π}} {\varphi _n})(1 - \sin \; ({\text{π}} {\varphi _n})) \;\;\;\;\; n \in {{{\bf{N}}}} $$ (6)

    设粒子i的位置$ {{\boldsymbol{X}}_i} = ({{{e}}_1},{{{e}}_2}, \cdots ,{{{e}}_D}) $eD为粒子iD维空间的位置,粒子i经过混沌映射变换后的初始位置$ {\boldsymbol{X}}_i^0 = ({{e}}_{i1}^0,{{e}}_{i2}^0, \cdots ,{{e}}_D^0) $,则

    $$ {\boldsymbol{X}}_i^0 = {{\boldsymbol{X}}_{\min }} + {\varphi _{n + 1}}({{\boldsymbol{X}}_{\max }} - {{\boldsymbol{X}}_{\min }}) $$ (7)

    式中XminXmax分别为搜索空间内粒子位置最小值和最大值。

    2) 交叉和高斯变异。第t次迭代时对粒子i的位置$ {{\boldsymbol{X}}_i}(t) $与其历史最优位置$ {{\boldsymbol{X}}_{i{\rm{best}}}}(t - 1) $进行离散相交[13-15],则交叉后粒子i位置${{\boldsymbol{X}}'_i}(t){{ =({{e}}}}_{i1}'(t),{{{{e}}}}_{i2}'(t), \cdots , {{{{e}}}}_{iD}'(t))$。交叉算法公式为

    $$ e_{iJ}'(t) = \left\{ \begin{gathered} be_{iJ}(t) + (1 - b)e_{iJ{\rm{best}}}(t - 1)\;\; {\text{ }} {k_{\rm{c}}} >{\rm{rand}}(0,1) \\ be_{iJ{\rm{best}}}(t - 1) + (1 - b)e_{iJ}(t) \;\;{\text{ }} {k_{\rm{c}}} \leqslant {\rm{rand}}(0,1) \end{gathered} \right. $$ (8)

    式中:b为交叉系数,取值为0~1;eiJt)为第t次迭代时粒子iJ维空间的位置,J=1,2,…,DeiJbestt)为第t次迭代时粒子iJ维空间的当前最优位置;kc为交叉概率。

    则更新后的粒子i最优位置为

    $$ {{\boldsymbol{X}}_{i{\rm{best}}}}(t) = \left\{ \begin{gathered} {{{\boldsymbol{X}}}_{i}^{}}(t) \qquad {\text{ }}h({{{\boldsymbol{X}}}_{i}^{}}(t)) < h({{\boldsymbol{X}}_{i{\rm{best}}}}(t)) \\ {{\boldsymbol{X}}_{i{\rm{best}}}}(t - 1) \qquad {\text{ }}h({{{\boldsymbol{X}}}_{i}^{}}(t)) \leqslant h({{\boldsymbol{X}}_{i{\rm{best}}}}(t)) \\ \end{gathered} \right. $$ (9)

    为保证算法的求解精度,对交叉后的个体进行高斯变异,得

    $$ {\boldsymbol{X}}_{i{\rm{best}}}^{*}(t) = {{\boldsymbol{X}}_{i{\rm{best}}}(t)} + ({{\boldsymbol{W}}_{\max }} - {{\boldsymbol{W}}_{\min }}) G $$ (10)

    式中:$ {\boldsymbol{X}}_{i{\rm{best}}}^ {*}(t) $为粒子i变异后的最优位置;WmaxWmin分别为搜索空间的最大值和最小值;G为标准高斯分布。

    更新后的粒子i最优位置为

    $${\boldsymbol{ X}}_{i{\rm{best}}}^{ * * }(t) = \left\{ \begin{gathered} {\boldsymbol{X}}_{i{\rm{best}}}^ *(t) \qquad h({\boldsymbol{X}}_{i{\rm{best}}}^ * (t)) < h({{\boldsymbol{X}}_{i{\rm{best}}}} (t)) \\ {{\boldsymbol{X}}_{i{\rm{best}}}}(t) \qquad h({\boldsymbol{X}}_{i{\rm{best}}}^ * (t)) \geqslant h({{\boldsymbol{X}}_{i{\rm{best}}}} (t) ) \\ \end{gathered} \right. $$ (11)

    3) 柯西变异。全局最优位置Xgbest引导群体朝向最优解。当Xgbest陷入局部最优时,群体搜索停滞,导致算法失效。采用柯西变异策略,以协助精英粒子跳出局部最优。全局最优位置变异值为

    $$ {\boldsymbol{X}}_{{\rm{gbest}}}^ * = {{\boldsymbol{X}}_{{\rm{gbest}}}} + ({{\boldsymbol{W}}_{\max }} - {{\boldsymbol{W}}_{\min }}) {\rm{cauchy}}(0,s (t)) $$ (12)

    式中:cauchy(0,st))为柯西分布表达式;s(t)为随迭代次数线性递减的柯西分布比例参数[16-18]

    $$ s(t + 1) = s(t) - \sin \; ({1 \mathord{\left/ {\vphantom {1 {{t_{\max }})}}} \right. } {{t_{\max }})}} $$ (13)

    式中tmax为最大迭代次数。

    更新后的全局最优位置为

    $$ {\boldsymbol{X}}_{{\rm{gbest}}}^{ * * } = \left\{ \begin{gathered} {\boldsymbol{X}}_{{\rm{gbest}}}^ * \qquad h({\boldsymbol{X}}_{{\rm{gbest}}}^ * ) < h({{\boldsymbol{X}}_{{\rm{gbest}}}}) \\ {{\boldsymbol{X}}_{{\rm{gbest}}}} \qquad h({\boldsymbol{X}}_{{\rm{gbest}}}^ * ) \geqslant h({{\boldsymbol{X}}_{{\rm{gbest}}}}) \\ \end{gathered} \right. $$ (14)

    4) 极值扰动。粒子种群具有趋同性,因此在算法后期,粒子飞行速度难以更新,导致难以发现更优位置。引入极值扰动避免粒子陷入停滞,速度更新公式为

    $$\begin{split} {{\boldsymbol{V}}_i}(t + 1) = & \omega {{\boldsymbol{V}}_i}(t) + {c_1}{r_1}\left[ { \left( { \frac{1}{2} + \frac{{{r_3}}}{2} } \right){{\boldsymbol{X}}_{i{\rm{best}}}} - {{\boldsymbol{X}}_i}(t) } \right] +\\& {c_2}{r_2}\left[ { \left( { \frac{1}{2} + \frac{{{r_4}}}{2} } \right){{{{\boldsymbol{X}}}}_{{\rm{gbest}}}} - {{\boldsymbol{X}}_i}(t) } \right] \end{split} $$ (15)

    式中r3r4为[0,1]上均匀分布的随机数。

    1) 交叉概率。在PSO算法中,交叉概率kc过大会消除部分优秀个体,过小则影响算法收敛速度。为提高算法性能,采用自适应交叉概率:

    $$ {k_{\rm{c}}} = \left\{ \begin{gathered} \frac{{{k_{{\rm{c}}1}} + {k_{{\rm{c}}2}}}}{2} + \frac{{{k_{{\rm{c}}1}} - {k_{{\rm{c}}2}}}}{2} \sin \left( { \frac{{ h_{{\rm{max}}}' - {h_{{\rm{avg}}}}}}{{{h_{\max }} - {h_{{\rm{avg}}}}}} \frac{{\text{π}} }{2} } \right) \;\;\;\; h_{{\rm{max}}}' \geqslant {h_{{\rm{avg}}}} \\ {k_{{\rm{c}}1}} \;\;\;\; h_{{\rm{max}}}' < {h_{{\rm{avg}}}} \\ \end{gathered} \right. $$ (16)

    式中:kc1kc2分别为初始交叉概率最大值和最小值;$ h_{{\rm{max}}}' $为2个粒子进行交叉操作时的适应度最大值;havg为适应度平均值;hmax为适应度最大值。

    2) 正态分布衰减惯性权重。惯性权重的取值直接影响算法性能。惯性权重应随迭代次数的增加而动态变化,即在迭代过程中由初期的较大值逐步线性减小。本文采取正态分布衰减的惯性权重:

    $$ \omega = {\omega _{\min }} + ({\omega _{\max }} - {\omega _{\min }}) \dfrac{1}{{\sqrt {2{\text{π}} } \sigma }}{{\rm{exp}}\left( { - \frac{{{t^2}}}{{2{\sigma ^2}t_{\max }^2}}} \right)} $$ (17)

    式中:ωminωmax分别为惯性权重最小值和最大值;σ为趋势参数,根据文献[19-20]可知最佳值为0.443 3。

    基于CEMOPSO算法的锚杆钻车钻臂定位控制流程如图3所示。

    图  3  基于CEMOPSO算法的锚杆钻车钻臂定位控制流程
    Figure  3.  Positioning control flow of drilling arm of bolt drilling rig based on chaotic crossover elite mutation opposition-based particle swarm optimization(CEMOPSO) algorithm

    1) 对种群进行混沌初始化,确定种群规模、自适应参数,并给定钻臂末端目标位姿。

    2) 计算粒子个体适应度,确定个体最优位置和全局最优位置,其大小为钻臂当前位姿和目标位姿的误差。

    3) 根据精英反向规则,计算精英个体的反向解。根据柯西变异公式,对精英个体实施柯西变异操作。

    4) 根据交叉规则,对粒子个体实施交叉操作,并对交叉后的个体最优位置实施高斯变异操作。

    5) 更新粒子个体最优位置和全局最优位置。

    6) 根据式(5)和式(15)对粒子位置和速度进行更新。

    7) 确定目标函数值是否达到收敛要求,若是则结束迭代,输出结果,否则重复步骤2),直至符合收敛要求。

    为检验CEMOPSO算法性能,分别从稳定性、精度、收敛速度3个方面,将其与PSO算法、EOPSO算法和交叉精英反向粒子群优化(Crossover Elite Opposition-based PSO,CEOPSO)算法进行对比。算法参数设置:种群规模为90,惯性权重最大值、最小值分别为0.9,0.6,限制速度为0.5,初始变异概率最小值、最大值分别为0.2,0.3,柯西分布比例参数初值为1。4种算法分别对4个标准测试函数(表2)执行20次,根据测试结果计算标准差和最优解,以此反映算法稳定性和求解精度,结果见表3。可看出CEMOPSO算法的稳定性和精度最优。

    表  2  标准测试函数
    Table  2.  Standard test functions
    函数维度搜索范围最优解
    ${f}_{1}(g)\text{=}{\displaystyle \sum _{r=1}^{n}{g}_{r}^{2} }$30[−100,100]0
    ${f_2}(g) =\displaystyle \sum\limits_{r = 1}^n {\left| { {g_r} } \right|} + \prod\limits_{r = 1}^n {\left| { {g_r} } \right|}$30[−10,10]0
    ${f_3}(g) = \displaystyle \sum\limits_{r = 1}^n {(\sum\limits_{q = 1}^n { {g_q}{)^2} } }$30[−100,100]0
    $\mathop f\nolimits_4 (g) = \max \{ \left| {\mathop g\nolimits_r } \right|,1 \leqslant r \leqslant n\}$30[−100,100]0
    下载: 导出CSV 
    | 显示表格

    为便于直观分析各算法性能,随机选择其中1组测试结果进行曲线可视化比较,如图4所示。可看出在算法迭代初期,CEMOPSO算法与其他算法没有显著差别,但随着迭代次数增加,其收敛速度迅速增大,明显优于其他3种算法。

    表  3  标准测试函数计算结果
    Table  3.  Calculation results of standard test functions
    函数PSO算法EOPSO算法CEOPSO算法CEMOPSO算法
    $ {f_1}(g) $标准差:$3.223\; 2 \times {10^{ { { - } }2} }$标准差:$ 6.193\;9 \times {10^{{{ - }}2}} $标准差:$2.925\;9 \times {10^{{{ - 6}}}}$标准差:$2.870\;6 \times {10^{{{ - 18}}}}$
    最优解:$ 2.807\;2 \times {10^{{{ - }}2}} $最优解:$ 2.979\;5 \times {10^{{{ - }}2}} $最优解:$1.393\;2 \times {10^{{{ - 6}}}}$最优解:$4.794\;3 \times {10^{{{ - 19}}}}$
    $ {f_2}(g) $标准差:$ 1.001\;8 \times {10^0} $标准差:$ 1.255\;4 \times {10^0} $标准差:$ 7.436\;1 \times {10^{{{ - }}2}} $标准差:$5.045\;2 \times {10^{{{ - 13}}}}$
    最优解:$ 8.349\;6 \times {10^{{{ - }}1}} $最优解:$ 8.012\;2 \times {10^{{{ - }}1}} $最优解:$ 6.558\;2 \times {10^{{{ - }}2}} $最优解:$1.479\;4 \times {10^{{{ - 13}}}}$
    $ {f_3}(g) $标准差:$ 39.100\;3 \times {10^0} $标准差:$ 36.417\;4 \times {10^0} $标准差:$ 34.092\;9 \times {10^0} $标准差:$9.092\;9 \times {10^{{{ - }}2}}$
    最优解:$ 32.092\;9 \times {10^0} $最优解:$ 31.565\;9 \times {10^0} $最优解:$ 32.073\;7 \times {10^0} $最优解:$7.686\;5 \times {10^{{{ - }}2}}$
    $ {f_4}(g) $标准差:$ 1.268\;5 \times {10^0} $标准差:$ 1.820\;8 \times {10^0} $标准差:$ 5.433\;3 \times {10^{{{ - }}1}} $标准差:$1.683\;6 \times {10^{{{ - 3}}}}$
    最优解:$ 1.167\;1 \times {10^0} $最优解:$ 1.035\;9 \times {10^0} $最优解:$ 5.398\;9 \times {10^{{{ - }}1}} $最优解:$1.327\;9 \times {10^{{{ - 3}}}}$
    下载: 导出CSV 
    | 显示表格
    图  4  标准测试函数进化曲线
    Figure  4.  Evolution curves of standard test functions

    为验证基于CEMOPSO算法的锚杆钻车钻臂定位控制方法的可行性及效果,采用Matlab2020a软件进行仿真验证。

    根据钻臂D−H参数在Matlab2020a中建立锚杆钻车钻臂模型,如图5所示。

    图  5  锚杆钻车钻臂模型
    Figure  5.  Drilling arm model of bolt drilling rig

    为便于观察锚杆钻车钻臂末端在空间中的运动范围,通过调节钻臂各关节变量来控制钻臂末端位姿。利用蒙特卡罗法绘制钻臂末端三维工作空间及其平面投影,如图6所示。

    图  6  锚杆钻车钻臂末端工作区域
    Figure  6.  Working area of drilling arm end of bolt drilling rig

    根据锚杆钻车钻臂末端位姿矩阵,采用欧拉角形式定义钻臂末端位姿:

    $$ {\boldsymbol{P}}({{\boldsymbol{X}}_i}) = [{p_x},{p_y},{p_{\textit{z}}},\beta ,\gamma ,\eta ] $$ (18)
    $$ \beta = \arctan \ 2({O_{\textit{z}}},{A_{\textit{z}}}) $$ (19)
    $$ \gamma = \arctan \ 2\left( - {N_{\textit{z}}},\sqrt {{O_{\textit{z}}}^2 + {A_{\textit{z}}}^2} \right) $$ (20)
    $$ \eta = \arctan\ 2({N_x},{N_y}) $$ (21)

    式中:$ ({p_x},{p_y},{p_z}) $为钻臂末端目标位置坐标;$ (\beta ,\gamma ,\eta ) $为钻臂末端目标位置坐标系与基坐标系对应坐标轴的夹角。

    针对4种算法,选取相同的初始参数进行仿真。针对多冗余自由度钻臂结构特点,为提高钻臂定位控制精度,取种群规模为300[14-16];惯性权重最大值、最小值分别为0.8,0.5。CEMOPSO算法采用正态分布衰减的惯性权重,限制速度为0.2。c1c2均取1.5[17]。初始交叉概率最大值、最小值分别为0.9,0.7;柯西分布比例参数初值为1,迭代次数为500。

    4种算法的位置误差和姿态误差收敛曲线如图7所示。可看出在相同的迭代次数和误差精度约束条件下,无论是位置误差还是姿态误差,CEMOPSO算法从迭代初期即具有极快的收敛速度,收敛性能优于其他算法。

    图  7  4种算法对钻臂定位控制的位置误差和姿态误差收敛曲线
    Figure  7.  Convergence curves of position errors and posture errors of drilling arm positioning control by use of four algorithms

    在相同的约束条件下,采用4种算法重复进行多次钻车钻臂定位控制,结果如图8所示。可看出CEMOPSO算法的位置误差和姿态误差均小于其他算法,误差曲线较平稳,最大位置误差为0.005 m,最大姿态误差为0.005 rad,验证了该算法用于锚杆钻车钻臂定位控制时具有较好的性能。

    图  8  4种算法对钻臂定位控制的位置误差和姿态误差曲线
    Figure  8.  Position error and posture error curves of drilling arm positioning control by use of four algorithms

    实际工程应用中一般要求控制算法能够在指定精度下快速收敛[21-22]。在相同定位精度下,4种算法的迭代次数如图9所示。可看出当设定位置误差为1 mm、姿态误差为0.01 rad时,PSO算法、EOPSO算法、CEOPSO算法、CEMOPSO算法的平均迭代次数分别为651,607,543,343 ;当设定位置误差为0.1 mm、姿态误差为0.001 rad时,PSO算法、EOPSO算法、CEOPSO算法、CEMOPSO算法的平均迭代次数分别为1 090,949,784,473,CEMOPSO算法的收敛速度最快,稳定性最佳,且求解精度越高,其优越性越突出。

    图  9  4种算法在不同精度条件下的迭代次数
    Figure  9.  Iteration times of four algorithms under different precision conditions

    1) CEMOPSO算法将混沌初始化、变异操作和交叉操作引入EOPSO算法,在保持初始种群多样性的基础上,增强了粒子个体之间的信息交流,平衡了算法局部搜索力和全局搜索力,使粒子个体能够更快地到达最优解,提高了算法的收敛速度和精度。

    2) 将CEMOPSO算法应用于锚杆钻车钻臂定位控制可避免产生无解状态,且能够保证在满足定位精度要求下,改善求解速度和稳定性,提高钻臂定位效率,具有良好的工程实用价值。

  • [1] 陈宜楷,莫勇.基于调洪演算的尾矿库安全监测预警阈值设置方法[J].现代矿业,2023,39(8):212-215,219.
    [2] 李爽,孙圣添,刘津源.马粪沟尾矿库智能监测系统优化升级与应用[J].矿业工程,2024,22(1):21-23,27.
    [3] 刘斌,王迅,曾霄祥,等.某多雨地区尾矿库防洪安全及排洪能力研究[J].现代矿业,2023,39(4):206-209.
    [4] 李道明,王明文,吴国高,等.新型排洪方式在尾矿库扩容工程中的应用分析[J].有色金属(矿山部分),2022,74(5):86-89.
    [5] 毛辉,候鹏博,李嘉伟.研究尾矿库排洪系统的封堵方法[J].工程建设与设计,2020(16):109-110.
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-24

目录

/

返回文章
返回