某矿顺层钻孔瓦斯抽采及布孔参数数值模拟

Numerical simulation on gas drainage and borehole arrangement parameters of bedding borehole in a coal mine

  • 摘要: 在综合考虑瓦斯流动惯性和滑脱效应的基础上,建立了瓦斯抽采流动模型。以松河煤矿15号煤层12150采煤工作面为工程背景,通过数值模拟分析了单一钻孔和多钻孔情况下瓦斯压力分布规律和渗透率变化情况,并结合钻孔抽采有效半径,得出了合理的抽采钻孔直径和钻孔布置参数。当单一钻孔瓦斯抽采240 d时,通过比较钻孔直径为40,65,75,94 mm时的瓦斯抽采效果,得出钻孔直径选取为65 mm较为适宜。当3个钻孔在钻孔间距分别为3,4,5 m时,进行不同时间段的瓦斯抽采的有效半径分析,得出当预抽采超过180 d时,选用5 m钻孔间距较为适宜;当抽采时间在120~150 d时,选择4 m钻孔间距较为适宜;当抽采时间少于120 d时,选用3 m钻孔间距较为适宜。煤层渗透率随抽采时间增加而逐渐增大,但增大幅度逐渐减小,抽采初期瓦斯压力梯度较大,大量吸附瓦斯解吸,瓦斯压力大于吸附膨胀应力,裂隙孔隙通道打开,此时煤层渗透率较大;抽采中后期,瓦斯压力持续降低,瓦斯压力相对吸附膨胀应力优势不大,孔隙裂隙增加量较小,造成在抽采中后期煤层渗透率增幅不大。

     

    Abstract: Based on comprehensive consideration of gas flow inertia and slippage effect, a gas drainage flow model was established. Based on engineering background of 12150 coal face of the No.15 coal seam in Songhe Coal Mine, the distribution law of gas pressure and the change of permeability under condition of single borehole and multi—borehole were analyzed by numerical simulation, and the reasonable diameter and the layout parameters of borehole were obtained combined with the effective radius of borehole drainage. When gas is extracted with single borehole for 240 days, it is more appropriate to select 65 mm diameter through comparing gas extraction effect of borehole with diameter among 40, 65, 75, 94 mm. When three boreholes are spaced at 3, 4 and 5 m respectively, it is concluded that when the pre—extraction time is more than 180 days, the boreholes spacing of 5 m is more appropriate on the basis of analysis of effective radius of gas extraction at different time periods. When the extraction time is between 120 days and 150 days, it is more appropriate to select the 4 m borehole spacing. When the extraction time is less than 120 days, it is more appropriate to select the 3 m borehole spacing. The permeability of coal seam increases gradually with the increasing of extraction time, but the increasing amplitude gradually decreases. At the initial stage of extraction, the gas pressure gradient is larger, a large amount of adsorption gas is desorbed, and the gas pressure is greater than the adsorption expansion stress, and the fracture—pore channel is opened, at this time the permeability is relatively large. In the middle and late stages of extraction, the gas pressure continues to decrease, the gas pressure has little advantage over the adsorption expansion stress, and the increase value of fracture—pore is small, resulting in a small increase of coal seam permeability during the middle and late stages of extraction.

     

/

返回文章
返回