Positioning method for roadheaders based on fusion of LiDAR and inertial navigation
-
摘要:
煤矿掘进机精准定位是智能掘进的基础,但井下低光照、高粉尘等恶劣作业环境导致单一定位方法精度低、稳定性差。为提高掘进机在恶劣环境中的定位精度,提出了一种基于误差状态卡尔曼滤波(ESKF)的激光雷达与惯导融合的掘进机定位方法。首先,以悬挂在巷道顶部的球靶中心为巷道坐标系原点,设计基于密度的噪声鲁棒空间聚类(DBSCAN)算法和基于形状特征的球靶点云提取算法,解决传统依靠反射强度区分球靶的方法在粉尘堆积时易失效的问题,结合坐标变换方法构建雷达位置测量系统以获得融合定位基准。其次,利用惯导积分得到掘进机的位置和姿态信息。然后,基于一阶高斯马尔可夫过程进行误差状态建模,采用误差状态卡尔曼滤波算法融合雷达和惯导的输出,得到掘进机在巷道中的融合定位结果,并将融合定位结果反馈给惯导,以校正其累计误差,从而获得精准的定位结果。定位试验结果表明:在掘进机静止状态下,不同位置和姿态角下雷达定位系统的位置误差小于10 cm,惯导定位系统的位置误差小于70 cm;在掘进机运动状态下,融合系统的位置误差为5.8 cm,相比雷达系统的位置误差降低了12.1%。基于激光雷达与惯导融合的掘进机定位方法可以在复杂掘进工况中满足煤矿掘进机自动截割时的定位需求。
Abstract:Accurate positioning of roadheaders in coal mines is fundamental to intelligent tunneling. However, harsh working conditions, such as low illumination and high dust levels in underground mines, often degrade the accuracy and stability of single-source positioning methods. To improve the positioning accuracy of the roadheaders in these harsh conditions, a new positioning method based on the fusion of LiDAR and inertial navigation using error state kalman filter (ESKF) was developed. First, the center of the spherical target suspended from the tunnel roof was defined as the origin of the tunnel coordinate system. A density-based spatial clustering of applications with noise (DBSCAN) and a shape-feature-based spherical target point cloud extraction algorithm were designed to address the problem that conventional methods relying on reflection intensity for distinguishing spherical targets fail in environments with dust accumulation. The coordinate transformation method is then used to build a radar position measurement system to obtain a reference for the fusion positioning. Next, position and attitude information of the roadheader were obtained through inertial navigation integration. Subsequently, an error-state model was formulated based on a first-order Gaussian-Markov process, and the ESKF algorithm was applied to fuse the outputs of LiDAR and the inertial navigation, providing the fusion positioning results of the roadheader within the tunnel. The fusion positioning results were then fed back into the inertial navigation to correct accumulated errors, achieving precise positioning. Experimental results demonstrated that, under static conditions, the position error of the LiDAR-based positioning system remained below 10 cm across different positions and attitude angles, and the inertial navigation system exhibited a position error of less than 70 cm. In dynamic conditions, the fusion positioning system achieved a position error of 5.8 cm, reducing the LiDAR system's error by 12.1%. The proposed LiDAR and inertial navigation fusion-based roadheader positioning method meets the positioning requirements for automated cutting operations of roadheaders in complex tunneling conditions.
-
-
表 1 基于激光雷达与惯导融合的掘进机定位试验的平均Hausdorff距离
Table 1 Mean Hausdorff distance in roadheader positioning experiments based on LiDAR and inertial navigation fusion
轨迹空间 平均 Hausdorff 距离/cm 雷达定位 融合定位 Y−X平面 4.6 3.8 Y−Z平面 4.0 3.7 三维空间 6.6 5.8 -
[1] 谢和平,王金华,鞠杨,等. 煤炭革命的战略与方向[M]. 北京:科学出版社,2018. XIE Heping,WANG Jinhua,JU Yang,et al. Coal industry reform:strategies and directions[M]. Beijing:Science Press,2018.
[2] SHEN Yang,WANG Pengjiang,ZHENG Weixiong,et al. Error compensation of strapdown inertial navigation system for the boom-type roadheader under complex vibration[J]. Axioms,2021,10(3) . DOI: 10.3390/axioms10030224.
[3] 马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40(5):751-759. MA Hongwei,WANG Peng,ZHANG Xuhui,et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):751-759.
[4] 马宏伟,毛金根,毛清华,等. 基于惯导/全站仪组合的掘进机自主定位定向方法[J]. 煤炭科学技术,2022,50(8):189-195. MA Hongwei,MAO Jingen,MAO Qinghua,et al. Automatic positioning and orientation method of roadheader based on combination of ins and digital total station[J]. Coal Science and Technology,2022,50(8):189-195.
[5] 张旭辉,刘博兴,张超,等. 掘进机全站仪与捷联惯导组合定位方法[J]. 工矿自动化,2020,46(9):1-7. ZHANG Xuhui,LIU Boxing,ZHANG Chao,et al. Roadheader positioning method combining total station and strapdown inertial navigation system[J]. Industry and Mine Automation,2020,46(9):1-7.
[6] 史苏阳. 煤矿复杂环境移动目标精确定位技术研究[D]. 徐州:中国矿业大学,2023. SHI Suyang. Research on accurate positioning technology of moving target in complex environment of coal mine[D]. Xuzhou:China University of Mining and Technology,2023.
[7] LYU Hongbo,ZHENG Xinyue,QI Yuhao,et al. UWB-IMU pose estimation for roadheader based on machine learning[C]. International Conference on Intelligent Control,Measurement and Signal Processing,Chengdu,2023:1153-1156.
[8] 毛清华,周庆,安炎基,等. 惯导与视觉信息融合的掘进机精确定位方法[J]. 煤炭科学技术,2024,52(5):236-248. DOI: 10.12438/cst.2023-1003 MAO Qinghua,ZHOU Qing,AN Yanji,et al. Precise positioning method of tunneling machine for inertial navigation and visual information fusion[J]. Coal Science and Technology,2024,52(5):236-248. DOI: 10.12438/cst.2023-1003
[9] WAN Jicheng,ZHANG Xuhui,ZHANG Chao,et al. Vision and inertial navigation combined-based pose measurement method of cantilever roadheader[J]. Sustainability,2023,15(5). DOI: 10.3390/SU15054018.
[10] 孙凌飞,刘亚,彭继国,等. 基于惯性技术的掘进机组合定位方法[J]. 煤炭科学技术,2024,52(12):300-310. DOI: 10.12438/cst.2023-1648 SUN Lingfei,LIU Ya,PENG Jiguo,et al. Integrated positioning method of roadheader based on inertial technology[J]. Coal Science and Technology,2024,52(12):300-310. DOI: 10.12438/cst.2023-1648
[11] 刘亚超. 面向掘进机的三维激光同步定位与建图[D]. 北京:北方工业大学,2024. LIU Yachao. Three-dimensional laser synchronous positioning and mapping for tunneling machines[D]. Beijing:North China University of Technology,2024.
[12] 李朕阳,邹鹏,刘振海,等. 同平台双偏振仪器地理定位及校正方法[J]. 光子学报,2021,50(2):150-162. LI Zhenyang,ZOU Peng,LIU Zhenhai,et al. Geolocation and correction method for dual polarization instrument on same platform[J]. Acta Photonica Sinica,2021,50(2):150-162.
[13] 司垒,王忠宾,谭超,等. 基于差分式惯性传感组件的采煤机位姿解算法[J]. 振动. 测试与诊断,2021,41(2):220-227,406. SI Lei,WANG Zhongbin,TAN Chao,et al. Position and attitude calculation algorithm of shearer based on differential inertial sensors[J]. Journal of Vibration,Measurement & Diagnosis,2021,41(2):220-227,406.
[14] 石勇. 基于三维激光雷达的掘进机实时位姿纠偏系统[J]. 煤矿机械,2023,44(5):64-66. SHI Yong. Real-time pose correction system of roadheader based on three-dimensional lidar[J]. Coal Mine Machinery,2023,44(5):64-66.
[15] QU Yuanyuan,YANG Teng,LI Tao,et al. Path tracking of underground mining boom roadheader combining BP neural network and state estimation[J]. Applied Sciences,2022,12(10). DOI: 10.3390/APP12105165.
[16] 蔡春蒙,刘京,周江涛,等. 激光雷达的标定方法、系统和可读存储介质:CN202411239096.7[P]. 2024-11-29. CAI Chunmeng,LIU Jing,ZHOU Jiangtao,et al. The calibration method,system,and readable storage medium of lidar:CN202411239096.7[P]. 2024-11-29.
[17] 郭伦锋,郭一楠,蒋康庆,等. 掘进机姿态参数测量及解算方法[J]. 工矿自动化,2021,47(12):46-54. GUO Lunfeng,GUO Yinan,JIANG Kangqing,et al. Measurement and calculation method of attitude parameters of roadheader[J]. Industry and Mine Automation,2021,47(12):46-54.
[18] HAHSLER M,PIEKENBROCK M,DORAN D. Dbscan:fast density-based clustering with R[J]. Journal of Statistical Software,2019,91. DOI: 10.18637/jss.v091.i01.
[19] SZABOVA M,DUCHON F. Survey of GNSS coordinates systems[J]. European Scientific Journal,2016,12(24):33-42.
[20] BRIGADNOV I,LUTONIN A,BOGDANOVA K. Error state extended Kalman filter localization for underground mining environments[J]. Symmetry,2023,15(2). DOI: 10.3390/SYM15020344.
-
期刊类型引用(4)
1. 刘康宁,杨国志,王鹏博,朱亚东,代阳. 基于数字孪生技术的智能巡检小车和UWB定位设计. 电子设计工程. 2025(04): 66-72 . 百度学术
2. 李贵虎,高贵军,李军霞,贾雪峰. 基于扩展卡尔曼滤波的清仓机器人位姿识别方法. 工矿自动化. 2024(05): 99-106 . 本站查看
3. 张骁亚. 煤矿综采面无人值守监测技术. 江西煤炭科技. 2024(03): 264-266+269 . 百度学术
4. 朱定赟. 未知环境下基于机器视觉的巡检机器人自主导航控制方法. 自动化与仪器仪表. 2024(09): 221-224+229 . 百度学术
其他类型引用(4)