Acoustic signal enhancement method for belt conveyor idler bearings
-
摘要:
针对目前带式输送机托辊轴承声信号增强方法存在过度降噪导致信号失真、适应性差,提取复杂声场特征效果较差等问题,提出一种基于直方图噪声估计和维纳滤波的带式输送机托辊轴承声信号增强方法。首先,计算轴承声信号各频带功率谱,构建功率谱直方图进行噪声谱估计,并对噪声谱进行一阶递归平滑;其次,利用噪声谱估计计算维纳滤波增益函数,得到维纳滤波降噪后的声信号;然后,对降噪后的声信号进行包络谱分析,通过对比实际测得的故障特征频率和理论的故障特征频率,实现对带式输送机托辊轴承故障诊断。实验和现场测试结果表明:基于直方图噪声估计和维纳滤波的带式输送机托辊轴承声信号增强方法得到的包络谱中含有明显的故障频率及其倍频成分,实验数据信噪比至少提升了1.14 dB,现场数据信噪比至少提升了1.04 dB,轴承故障特征提取效果较好,可实现环境噪声干扰严重下的带式输送机托辊轴承声信号增强。
Abstract:To address the issues in existing acoustic signal enhancement methods for belt conveyor idler bearings, such as excessive noise reduction leading to signal distortion, poor adaptability, and ineffective extraction of complex sound field characteristics, a method based on histogram noise estimation and Wiener filtering was proposed. First, the power spectrum of each frequency band of acoustic signal was computed, and a power spectrum histogram was constructed to estimate the noise spectrum, followed by first-order recursive smoothing of the noise spectrum. Next, the estimated noise spectrum was used to calculate the Wiener filter gain function, obtaining the noise-reduced acoustic signal. Then, envelope spectrum analysis was performed on the denoised acoustic signal. By comparing the measured fault characteristic frequencies with theoretical fault characteristic frequencies, fault diagnosis of the belt conveyor idler bearing was achieved. Experimental and field test results show that the proposed acoustic signal enhancement method, based on histogram noise estimation and Wiener filtering, produces an envelope spectrum containing distinct fault characteristic frequencies and their harmonic components. The signal-to-noise ratio (SNR) of the experimental data improved by at least 1.14 dB, while the SNR of the field data improved by at least 1.04 dB. The method demonstrates good performance in extracting bearing fault features and can effectively enhance acoustic signals for belt conveyor idler bearings under severe environmental noise interference.
-
-
表 1 故障模拟实验参数
Table 1 Parameters of fault simulation test
参数 数值 参数 数值 输入转速/(r·min−1) 360 麦克风间距/m 2 采样频率/Hz 128 00 麦克风高度/m 0.35 采样点数/个 8 192 阵列距托辊垂直距离/m 1.2 阵列麦克风数量/个 5 表 2 轴承加工缺陷和故障信息
Table 2 Bearing manufacturing defects and fault information
故障类型 缺陷数量/条 缺陷尺寸/mm 缺陷频率/Hz 外圈故障 4 1×1 18.44 内圈故障 2 1×1 29.57 表 3 实验数据降噪后信号和原始信号的信噪比
Table 3 Signal-to-noise ratio of denoised and original signals in test data
-
[1] 郭砚秋,苗长云,刘意. 基于热红外图像的带式输送机托辊故障检测研究[J]. 工矿自动化,2023,49(10):52-60. GUO Yanqiu,MIAO Changyun,LIU Yi. Research on fault detection of belt conveyor roller based on thermal infrared image[J]. Journal of Mine Automation,2023,49(10):52-60.
[2] 秦翥. 带式输送机智能化发展现状研究[J]. 煤矿机械,2025,46(1):73-76. QIN Zhu. Research on development status of intelligent belt conveyor[J]. Coal Mine Machinery,2025,46(1):73-76.
[3] 韩京哲,熊晓燕,陈帅,等. 带式输送机时变负载驱动特性的研究[J]. 机械设计与制造,2023(12):146-151. HAN Jingzhe,XIONG Xiaoyan,CHEN Shuai,et al. Research on driving characteristics of virtual prototype of belt conveyor[J]. Machinery Design & Manufacture,2023(12):146-151.
[4] 刘勇. 基于声信号的带式输送机托辊故障特征分析[J]. 中国安全科学学报,2023,33(增刊2):13-17. LIU Yong. Fault characteristic analysis of belt conveyor rollers based on sound signal[J]. China Safety Science Journal,2023,33(S2):13-17.
[5] 张中盘,张明,时瑛,等. 皮带输送机托辊故障声源定位方法[J]. 噪声与振动控制,2024,44(1):142-147. DOI: 10.3969/j.issn.1006-1355.2024.01.022 ZHANG Zhongpan,ZHANG Ming,SHI Ying,et al. Sound source localization method for belt conveyor idler faults[J]. Noise and Vibration Control,2024,44(1):142-147. DOI: 10.3969/j.issn.1006-1355.2024.01.022
[6] 杨小权,刘曰木,刘江. 基于卡尔曼滤波与子带选取的轴承声信号增强方法[J]. 机电工程,2023,40(11):1673-1681. YANG Xiaoquan,LIU Yuemu,LIU Jiang. Acoustic signal enhancement method for bearings based on Kalman filtering and sub-band selection[J]. Journal of Mechanical & Electrical Engineering,2023,40(11):1673-1681.
[7] 张晓东,张玉强,杜方鹏,等. 基于SBF−ISVD的带式输送机声信号增强方法[J]. 机电工程,2024,41(10):1875-1884. DOI: 10.3969/j.issn.1001-4551.2024.10.016 ZHANG Xiaodong,ZHANG Yuqiang,DU Fangpeng,et al. Acoustic signal enhancement method of belt conveyor based on SBF-ISVD[J]. Journal of Mechanical & Electrical Engineering,2024,41(10):1875-1884. DOI: 10.3969/j.issn.1001-4551.2024.10.016
[8] YU Gongye,YAN Ge,MA Bo. Feature enhancement method of rolling bearing acoustic signal based on RLS-RSSD[J]. Measurement,2022,192. DOI: 10.1016/j.measurement.20.11088.
[9] 费红博,张超,吴乐,等. 基于VMD−MCKD的微弱故障信号降噪及冲击特征增强方法[J/OL]. 机电工程:1-11[2024-11-04]. http://kns.cnki.net/kcms/detail/.1088.th.20240914.144.004.html. FEI Hongbo,ZHANG Chao,WU Le,et al. Method for denoising weak fault signals and enhancing impact characteristics based on VMD-MCKD[J/OL]. Journal of Mechanical & Electrical Engineering:1-11[2024-11-04]. http://kns.cnki.net/kcms/detail/.1088.th.20240914.144.004.html.
[10] 石渡江,王文波. 基于改进TVF−EMD与SVD的轴承故障特征提取[J]. 机床与液压,2024,52(18):218-229. DOI: 10.3969/j.issn.1001-3881.2024.18.030 SHI Dujiang,WANG Wenbo. Bearing fault feature extraction based on improved TVF-EMD and SVD[J]. Machine Tool & Hydraulics,2024,52(18):218-229. DOI: 10.3969/j.issn.1001-3881.2024.18.030
[11] 张伟涛,张东江,纪晓凡,等. 基于CCA和多通道循环维纳滤波的滚动轴承故障源分析[J]. 振动与冲击,2023,42(24):317-325. ZHANG Weitao,ZHANG Dongjiang,JI Xiaofan,et al. Fault analysis of rolling element bearing based on CCA and a multichannel cyclic Wiener filter[J]. Journal of Vibration and Shock,2023,42(24):317-325.
[12] 李建坡,李美霖,杨涛,等. 大规模MIMO−OFDM系统中低复杂度维纳滤波信道估计算法[J]. 吉林大学学报(工学版),2022,52(1):211-218. LI Jianpo,LI Meilin,YANG Tao,et al. Low-complexity wiener filter channel estimation algorithm in massive MIMO-OFDM system[J]. Journal of Jilin University(Engineering and Technology Edition),2022,52(1):211-218.
[13] 许春冬,张震,战鸽,等. 面向语音增强的约束序贯高斯混合模型噪声功率谱估计[J]. 声学学报,2017,42(5):633-640. XU Chundong,ZHANG Zhen,ZHAN Ge,et al. Noise power estimation based on constrained sequential Gaussian mixture model for speech enhancement[J]. Acta Acustica,2017,42(5):633-640.
[14] TIAN Fengchun,YANG S X,DONG K. Circuit and noise analysis of odorant gas sensors in an E-nose[J]. Sensors,2005,5(1):85-96. DOI: 10.3390/s5010085
[15] 潘甲. 多通道语音增强算法研究[D]. 武汉:湖北工业大学,2017. PAN Jia. Research on multichannel speech enhancement algorithm[D]. Wuhan:Hubei University of Technology,2017.
[16] 陈敬军,范威. 阵列信号维纳滤波用于主动声呐图像增强处理[J]. 声学技术,2021,40(6):858-863. DOI: 10.3969/j.issn.1000-3630.2021.6.sxjs202106018 CHEN Jingjun,FAN Wei. Active sonar image enhancement using Wiener filtering on array signals[J]. Technical Acoustics,2021,40(6):858-863. DOI: 10.3969/j.issn.1000-3630.2021.6.sxjs202106018
[17] ZHENG Chengshi,ZHANG Huiyong,LIU Wenzhe,et al. Sixty years of frequency-domain monaural speech enhancement:from traditional to deep learning methods[J]. Trends in Hearing,2023,27. DOI: 10.1177/2331216523120991.
[18] 彭健新,唐云飞. 谱减法与维纳滤波法相结合的睡眠鼾声降噪处理[J]. 华南理工大学学报(自然科学版),2018,46(3):103-107. DOI: 10.3969/j.issn.1000-565X.2018.03.015 PENG Jianxin,TANG Yunfei. Noise Reduction of snoring sound by using traditional spectral subtraction and wiener filter[J]. Journal of South China University of Technology(Natural Science Edition),2018,46(3):103-107. DOI: 10.3969/j.issn.1000-565X.2018.03.015
[19] WU Peng,YU Gongye,DONG Naiji,et al. Acoustic feature extraction method of rotating machinery based on the WPE-LCMV[J]. Machines,2022,10(12). DOI: 10.3390/MACHINES10121170.
[20] LIU Juan,FU Shiming,LIU Fen,et al. Intelligent fault diagnosis of belt conveyor rollers using a polar KNN algorithm with audio features[J]. Engineering Failure Analysis,2025,168. DOI: 10.1016/J.ENGFAILANAL.2024.109101.
[21] DAO Fang,ZENG Yun,QIAN Jing. A novel denoising method of the hydro-turbine runner for fault signal based on WT-EEMD[J]. Measurement,2023,219. DOI:10.1016/J.MEASUREMENT.2023. 113306.
-
期刊类型引用(18)
1. 李富强. 基于深度卷积神经网络与多源信号的煤岩识别研究. 煤炭技术. 2025(03): 233-238 . 百度学术
2. 高如新,杜亚博,常嘉浩. 基于改进YOLOX-S的轻量化煤矸石检测方法研究. 河南理工大学学报(自然科学版). 2024(04): 133-140 . 百度学术
3. 陈晓杰,王亮,赵美玲,刘光伟,涂俊雄. 基于ECA-YOLOv5s的煤矿带式输送机异物检测网络模型. 采矿技术. 2024(04): 316-324 . 百度学术
4. 陈世涛,张敏,栗超. 基于YOLOv5的带式输送机煤堆异物检测. 洁净煤技术. 2024(S2): 12-18 . 百度学术
5. 涂灿. VCS智能干选机的试验研究. 煤炭加工与综合利用. 2023(06): 37-41 . 百度学术
6. 高如新,常嘉浩,杜亚博,刘群坡. 基于改进YOLOv5s的煤矸石目标检测算法. 电子测量技术. 2023(13): 95-101 . 百度学术
7. 汪岩,李自强. 基于AI图像处理的煤矸石特征提取及分类方法. 煤炭技术. 2023(11): 231-233 . 百度学术
8. 曹现刚,刘思颖,王鹏,许罡,吴旭东. 面向煤矸分拣机器人的煤矸识别定位系统研究. 煤炭科学技术. 2022(01): 237-246 . 百度学术
9. 倪云峰,封子杰,郭苹,王静. 基于卷积神经网络的煤矸石识别算法研究. 现代电子技术. 2022(10): 57-62 . 百度学术
10. 张红,李晨阳. 基于光学图像的煤矸石识别方法综述. 煤炭工程. 2022(07): 159-163 . 百度学术
11. 申利飞,田子建,白林绪. 改进纹理模糊筛选下煤矸石X射线图像处理. 激光与红外. 2022(07): 1090-1097 . 百度学术
12. 陈彪,卢兆林,代伟,邵明,于大伟,董良. 基于轻量化HPG-YOLOX-S模型的煤矸石图像精准识别. 工矿自动化. 2022(11): 33-38 . 本站查看
13. 郑新涛,苏道玉. 基于小波矩的智能手绘草图识别系统设计. 现代电子技术. 2021(12): 177-181 . 百度学术
14. 胡璟皓,高妍,张红娟,靳宝全. 基于深度学习的带式输送机非煤异物识别方法. 工矿自动化. 2021(06): 57-62+90 . 本站查看
15. 王冠军,苏婷婷,刘文博,钱智平,李佳泽. 基于EAIDK的智能煤矸分拣系统设计. 工矿自动化. 2020(01): 105-108 . 本站查看
16. 柴炳升,胡峰. 石槽村选煤厂重介质浅槽分选工艺探究. 煤炭加工与综合利用. 2020(08): 33-34+38 . 百度学术
17. 章振原,秦训鹏,李轶峰. 基于机器视觉的废旧有色金属碎料识别方法. 激光与光电子学进展. 2020(16): 194-201 . 百度学术
18. 潘卫东,李新源,员明涛,袁永康,杨克虎. 基于顶煤运移跟踪仪的自动化放煤技术原理及应用. 煤炭学报. 2020(S1): 23-30 . 百度学术
其他类型引用(31)