Decision-making method for residual support force of hydraulic supports during pressurized moving under fragmented roof conditions in ultra-thin coal seams
-
摘要:
在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深度混合核极限学习机(DHKELM)的液压支架带压移架残余支撑力决策方法。在混合核极限学习机(HKELM)基础上引入极限学习机自动编码器(ELM−AE)结构来构建DHKELM模型,以增强对复杂输入的特征提取和非线性映射能力;引入ICMIC混沌映射、Lévy飞行和贪婪策略对蜣螂算法(DBO)进行改进,形成具备更高寻优精度和更快收敛速度的IDBO算法;利用IDBO算法优化DHKELM模型的超参数,建立IDBO−DHKELM模型。结合极薄煤层综采工作面液压支架带压移架实测数据,通过可视化和相关性分析,确定支架号、带压移架前支架支撑力、推移油缸进液压力和推移油缸行程变化速度作为影响残余支撑力的关键特征,并构建残余支撑力决策样本数据集,最终完成IDBO−DHKELM模型的训练与评估。实验结果表明:基于IDBO−DHKELM模型的液压支架带压移架残余支撑力决策结果的均方根误差(RMSE)、平均绝对误差(MAE)及决定系数(R2)分别为0.143,0.119,0.971,具有较高的决策精确度。
Abstract:Accurate decision-making on the residual support force of hydraulic supports during pressurized moving under fragmented roof conditions is crucial for improving intelligent mining efficiency in ultra-thin coal seams and ensuring operational safety. To address this challenge, this study proposed a novel decision-making method based on a Deep Hybrid Kernel Extreme Learning Machine (DHKELM) optimized by an Improved Dung Beetle Optimization (IDBO) algorithm. The DHKELM model was constructed by incorporating an Extreme Learning Machine Autoencoder (ELM-AE) into the Hybrid Kernel Extreme Learning Machine (HKELM) framework, enhancing its feature extraction capability and nonlinear mapping efficiency for complex inputs. Furthermore, the Dung Beetle Optimization (DBO) algorithm was enhanced with ICMIC chaotic mapping, Lévy flight, and a greedy strategy, yielding the IDBO algorithm with improved optimization accuracy and faster convergence. The IDBO algorithm was further employed to optimize the hyperparameters of the DHKELM model, forming the IDBO-DHKELM model. Using field-measured data from hydraulic supports during pressurized moving in a fully mechanized ultra-thin coal seam mining face, key influencing factors of residual support force—including support number, support force before pressurized moving, pushing cylinder inlet pressure, and pushing cylinder stroke variation speed—were identified through visualization and correlation analysis. A residual support force decision-making dataset was subsequently constructed, and the IDBO-DHKELM model was trained and evaluated. Experimental results demonstrate that the proposed IDBO-DHKELM model achieves high decision-making accuracy, with a root mean square error (RMSE) of 0.143, a mean absolute error (MAE) of 0.119, and a coefficient of determination (R2) of 0.971.
-
-
表 1 残余支撑力与各影响因素相关性分析结果
Table 1 Correlation analysis between residual support force and influencing factors
参数 皮尔逊相关系数 推移油缸
进液压力带压移架前
支架支撑力推移油缸行程
变化速度支架号 工作面倾角 带压移架
残余支撑力0.41 0.33 0.18 0.15 0.07 表 2 不同模型的决策结果评价
Table 2 Evaluation of different models in decision-making
模型 RMSE MAE R2 ELM 0.376 0.312 0.788 HKELM 0.310 0.253 0.864 DHKELM 0.251 0.207 0.913 IDBO−DHKELM 0.143 0.119 0.971 表 3 测试函数
Table 3 Test functions
函数 维度 取值范围 最优解 Schwefel 30 [−100,100] 0 Rastrigin 30 [−5.12,5.12] 0 表 4 不同算法优化DHKELM模型决策结果评价
Table 4 Evaluation of different optimization algorithms for DHKELM model
模型 RMSE MAE R2 PSO−DHKELM 0.242 0.203 0.925 DBO−DHKELM 0.220 0.176 0.943 IDBO−DHKELM 0.143 0.119 0.971 -
[1] 袁永,屠世浩,陈忠顺,等. 薄煤层智能开采技术研究现状与进展[J]. 煤炭科学技术,2020,48(5):1-17. YUAN Yong,TU Shihao,CHEN Zhongshun,et al. Current situation and development of intelligent mining technology for thin coal seams[J]. Coal Science and Technology,2020,48(5):1-17.
[2] ZHAO Tongbin,ZHANG Zhenyu,TAN Yunliang,et al. An innovative approach to thin coal seam mining of complex geological conditions by pressure regulation[J]. International Journal of Rock Mechanics and Mining Sciences,2014,71:249-257. DOI: 10.1016/j.ijrmms.2014.05.021
[3] 童应山,王森,张连东,等. 基于覆岩破断特征的极薄煤层工作面支架工作阻力确定[J]. 西安科技大学学报,2024,44(1):64-73. TONG Yingshan,WANG Sen,ZHANG Liandong,et al. Determination of support working resistance in the working face of extremely-thin coal seam based on overburden fracture characteristics[J]. Journal of Xi'an University of Science and Technology,2024,44(1):64-73.
[4] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357. WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
[5] 周开平. 薄煤层智能化无人工作面成套装备与技术[J]. 煤炭科学技术,2020,48(3):59-67. ZHOU Kaiping. Complete equipment and technology for intelligent unmanned working face in thin coal seam[J]. Coal Science and Technology,2020,48(3):59-67.
[6] 杨生华,周永昌,芮丰,等. 薄煤层开采与成套装备技术的发展趋势[J]. 煤炭科学技术,2020,48(3):49-58. YANG Shenghua,ZHOU Yongchang,RUI Feng,et al. Development trend of thin coal seam mining and complete equipment technology[J]. Coal Science and Technology,2020,48(3):49-58.
[7] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36. WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
[8] 葛世荣. 智能化采煤装备的关键技术[J]. 煤炭科学技术,2014,42(9):7-11. GE Shirong. Key technology of intelligent coal mining equipment[J]. Coal Science and Technology,2014,42(9):7-11.
[9] 牛剑峰. 综采液压支架跟机自动化智能化控制系统研究[J]. 煤炭科学技术,2015,43(12):85-91. NIU Jianfeng. Study on automatic and intelligent following control system of hydraulic powered support in fully-mechanized coal mining face[J]. Coal Science and Technology,2015,43(12):85-91.
[10] 付翔,李浩杰,张锦涛,等. 综采液压支架中部跟机多模态人机协同控制系统[J]. 煤炭学报,2024,49(3):1717-1730. FU Xiang,LI Haojie,ZHANG Jintao,et al. Multimodal human-machine collaborative control system for hydraulic supports following the shearer in the middle range of fully mechanized mining face[J]. Journal of China Coal Society,2024,49(3):1717-1730.
[11] 朱金雨,李国莲. 液压支架跟机自动化系统设计[J]. 工矿自动化,2013,39(12):1-4. DOI: 10.7526/j.issn.1671-251X.2013.12.001 ZHU Jinyu,LI Guolian. Design of machinery-tracked automatic system of hydraulic support[J]. Industry and Mine Automation,2013,39(12):1-4. DOI: 10.7526/j.issn.1671-251X.2013.12.001
[12] 韩宝珠,安叶青. 基于PLC的液压支架带压移架控制技术[J]. 煤炭技术,2022,41(7):185-187. HAN Baozhu,AN Yeqing. Control technology of hydraulic support moving under pressure based on PLC[J]. Coal Technology,2022,41(7):185-187.
[13] 杨科,池小楼,刘帅. 大倾角煤层综采工作面液压支架失稳机理与控制[J]. 煤炭学报,2018,43(7):1821-1828. YANG Ke,CHI Xiaolou,LIU Shuai. Instability mechanism and control of hydraulic support in fully mechanized longwall mining with large dip[J]. Journal of China Coal Society,2018,43(7):1821-1828.
[14] 张武,贾艳平,路正雄,等. 大采高液压支架带压移架性能研究[J]. 煤矿机械,2020,41(7):53-55. ZHANG Wu,JIA Yanping,LU Zhengxiong,et al. Performance study on moving support with pressure for hydraulic support in large mining height[J]. Coal Mine Machinery,2020,41(7):53-55.
[15] 曹连民,张亚珠,郭徽,等. 大采高液压支架带压移架技术[J]. 煤矿安全,2018,49(3):83-86. CAO Lianmin,ZHANG Yazhu,GUO Hui,et al. Advancing support with pressure technology for hydraulic support with large mining height[J]. Safety in Coal Mines,2018,49(3):83-86.
[16] 李志旭. 液压支架带压移架控制技术研究与应用[D]. 青岛:山东科技大学,2020. LI Zhixu. Research and application on control technology of advancing support with pressure for hydraulic support[D]. Qingdao:Shandong University of Science and Technology,2020.
[17] 曾庆田,吕珍珍,石永奎,等. 基于Prophet+LSTM模型的煤矿井下工作面矿压预测研究[J]. 煤炭科学技术,2021,49(7):16-23. ZENG Qingtian,LYU Zhenzhen,SHI Yongkui,et al. Research on prediction of underground coal mining face pressure based on Prophet+LSTM model[J]. Coal Science and Technology,2021,49(7):16-23.
[18] 王鹏,伍永平,王栓林,等. 矿井瓦斯浓度Lagrange−ARIMA实时预测模型研究[J]. 煤炭科学技术,2019,47(4):141-146. WANG Peng,WU Yongping,WANG Shuanlin,et al. Study on Lagrange-ARIMA real-time prediction model of mine gas concentration[J]. Coal Science and Technology,2019,47(4):141-146.
[19] TIAN Zhongda,LI Shujiang,WANG Yanhong,et al. Wind power prediction method based on hybrid kernel function support vector machine[J]. Wind Engineering,2018,42(3):252-264.
[20] 王超,蔺红,庞晓虹. 基于HPO−VMD和MISMA−DHKELM的短期光伏功率组合预测[J]. 太阳能学报,2023,44(12):65-73. WANG Chao,LIN Hong,PANG Xiaohong. Short-term photovoltaic power combination prediction based on HPO-VMD and MISMA-DHKELM[J]. Acta Energiae Solaris Sinica,2023,44(12):65-73.
[21] CHU Yunfei,FENG Chunyan,GUO Caili,et al. Network embedding based on deep extreme learning machine[J]. International Journal of Machine Learning and Cybernetics,2019,10(10):2709-2724.
[22] XUE Jiankai,SHEN Bo. Dung beetle optimizer:a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing,2023,79(7):7305-7336.
-
期刊类型引用(2)
1. 杨乐,何大阔,王正松. 基于机器视觉的二维码检测教学实验系统设计. 控制工程. 2024(09): 1722-1728 . 百度学术
2. 杨乐,周子振,蔡恩文,王正松. 包装印刷品二维码在线检测系统设计. 包装与食品机械. 2023(04): 90-95 . 百度学术
其他类型引用(4)