基于改进人工蜂群算法的矿井风量按需调控智能决策

张浪, 雷爽, 李伟, 刘彦青

张浪,雷爽,李伟,等. 基于改进人工蜂群算法的矿井风量按需调控智能决策[J]. 工矿自动化,2025,51(3):131-137. DOI: 10.13272/j.issn.1671-251x.2024100014
引用本文: 张浪,雷爽,李伟,等. 基于改进人工蜂群算法的矿井风量按需调控智能决策[J]. 工矿自动化,2025,51(3):131-137. DOI: 10.13272/j.issn.1671-251x.2024100014
ZHANG Lang, LEI Shuang, LI Wei, et al. Intelligent decision-making for mine airflow on demand based on the improved artificial bee colony algorithm[J]. Journal of Mine Automation,2025,51(3):131-137. DOI: 10.13272/j.issn.1671-251x.2024100014
Citation: ZHANG Lang, LEI Shuang, LI Wei, et al. Intelligent decision-making for mine airflow on demand based on the improved artificial bee colony algorithm[J]. Journal of Mine Automation,2025,51(3):131-137. DOI: 10.13272/j.issn.1671-251x.2024100014

基于改进人工蜂群算法的矿井风量按需调控智能决策

基金项目: 国家自然科学基金青年科学基金资助项目(52304224)。
详细信息
    作者简介:

    张浪(1978—),男,内蒙古乌兰察布人,研究员,硕士研究生导师,硕士,研究方向为矿井智能通风,E-mail:lnzhanglang@163.com

    通讯作者:

    雷爽(1999—),男,四川绵阳人,硕士研究生,研究方向为矿井智能通风、智能优化算法,E-mail:l18874244070@163.com

  • 中图分类号: TD724

Intelligent decision-making for mine airflow on demand based on the improved artificial bee colony algorithm

  • 摘要:

    针对现有元启发式算法求解矿井风量调控无约束优化数学模型存在收敛速度较慢的问题,提出了一种基于改进人工蜂群算法(ABC)的矿井风量按需调控智能决策方法。以矿井调节分支风阻为决策变量、各分支实际风量与需风量相符合为约束条件,以目标用风分支风量与理想风量差距最小为目标,建立了矿井风量按需调控智能决策模型;运用拉格朗日松弛方法优化模型的约束条件,采用冲突数方法优化模型的目标函数,利用随机搜索方法和启发式算法优化模型的搜索策略。针对人工蜂群算法(ABC)利用能力不足的问题,提出了一种改进ABC算法,并将其用于求解矿井风量按需调控智能决策模型。该算法在采蜜蜂局部寻优时引入群体历史最优解引导采蜜行为,并利用一般反向学习策略保存侦查蜂的搜索经验,良好地平衡了算法的探索和利用能力。实验结果表明:与粒子群优化(PSO)算法、ABC算法、基于全局最优的人工蜂群(GABC)算法和基于一般反向学习的人工蜂群(GABC−GOBL)算法相比,改进ABC算法能更加快速、稳定地求解出矿井风量按需调控最优方案,且风量调控精度可达0.49 m3/s。

    Abstract:

    To address the issue of slow convergence speed in solving the unconstrained optimization mathematical model of mine airflow control using existing metaheuristic algorithms, an intelligent decision-making method for mine airflow on demand based on an improved Artificial Bee Colony (ABC) algorithm was proposed. The decision variable was the mine ventilation branch resistance adjustment, with the constraint that the actual airflow in each branch matched the required airflow. The objective was to minimize the difference between the target branch airflow and the ideal airflow. A mine airflow on-demand control intelligent decision-making model was established. The Lagrange relaxation method was used to optimize the model's constraint conditions, the conflict count method was used to optimize the objective function of the model, and random search methods combined with heuristic algorithms were used to optimize the search strategy of the model. To address the issue of insufficient utilization capability in the ABC algorithm, an improved ABC algorithm was proposed and applied to solve the mine airflow on-demand control intelligent decision-making model. The algorithm introduced the population's historical optimal solution to guide the foraging behavior of the honeybees during local optimization and used a general reverse learning strategy to preserve the scout bees' search experience, which effectively balanced the exploration and exploitation capabilities of the algorithm. Experimental results showed that, compared with the Particle Swarm Optimization (PSO) algorithm, the ABC algorithm, the Gbest-guided artificial bee colony (GABC) algorithm, and artificial bee colony with generalized opposition-based learning (ABC-GOBL) algorithm, the improved ABC algorithm could solve the optimal solution of mine airflow on-demand control more quickly and stably, with an airflow control accuracy of up to 0.49 m3/s.

  • 图  1   通风网络拓扑

    Figure  1.   Ventilation network topology

    图  2   不同算法的迭代收敛曲线

    Figure  2.   Iterative convergence curves of different algorithms

    表  1   通风网络初始数据

    Table  1   Ventilation network initial data

    分支
    编号
    风阻/
    (N·s2·m−8
    风量/
    (m3·s−1
    分支
    编号
    风阻/
    (N·s2·m−8
    风量/
    (m3·s−1
    1 0.006455 129.50 9 0.114862 12.32
    2 0.004709 29.96 10 0.085501 14.27
    3 0.009727 20.85 11 0.001561 62.09
    4 0.001339 73.38 12 0.001391 73.38
    5 1.572439 5.31 13 0.015521 50.81
    6 0.001562 62.10 14 0.005727 129.50
    7 0.232000 11.28 15 0 129.50
    8 0.013821 35.51
    下载: 导出CSV

    表  2   通风网络各分支类型、风阻和风量调节范围

    Table  2   Branch types, air resistance, and airflow regulation range of the ventilation network

    分支编号分支类型风阻调节范围/(N·s2·m−8风量调节范围/(m3·s−1
    1一般分支0.006455129.50
    2其他用风分支0.00470926.96~32.96
    3其他用风分支0.00972718.77~22.94
    4一般分支0.0013393.94~126.00
    5一般分支1.5724393.94~126.00
    6一般分支0.0015623.94~126.00
    7其他用风分支0.0409400.88432410.15~12.41
    8一般分支0.0138210.8443143.94~126.00
    9其他用风分支0.0166150.57761611.09~13.55
    10目标用风分支0.08550131.50~32.50
    11一般分支0.0015613.94~126.00
    12一般分支0.0013913.94~126.00
    13一般分支0.0049640.7143233.94~126.00
    14其他用风分支0.005727129.50
    15虚拟分支0129.50
    下载: 导出CSV

    表  3   不同算法下模型求解结果

    Table  3   Model solution results under different algorithms

    算法 算法成功率/% 平均收敛代数 平均寻优时间/s
    改进ABC 100 42 132.72
    GABC 87 53 167.48
    ABC−GOBL 100 122 385.52
    ABC 100 158 516.68
    PSO 0
    下载: 导出CSV

    表  4   改进ABC算法求解出的最优矿井风阻调控方案

    Table  4   Optimal mine ventilation resistance control scheme solved by the improved artificial bee colony algorithm

    分支
    编号
    风阻/
    (N·s2·m−8
    风量/
    (m3·s−1
    分支
    编号
    风阻/
    (N·s2·m−8
    风量/
    (m3·s−1
    1 0.006455 129.50 9 0.571217 12.21
    2 0.004709 27.25 10 0.085501 31.51
    3 0.009727 18.96 11 0.001561 64.23
    4 0.001339 74.83 12 0.001391 74.83
    5 1.572439 8.49 13 0.051381 46.21
    6 0.001562 64.23 14 0.005727 129.50
    7 0.871307 10.60 15 0 129.50
    8 0.209715 20.51
    下载: 导出CSV
  • [1] 卢新明,尹红. 矿井通风智能化理论与技术[J]. 煤炭学报,2020,45(6):2236-2247.

    LU Xinming,YIN Hong. The intelligent theory and technology of mine ventilation[J]. Journal of China Coal Society,2020,45(6):2236-2247.

    [2] 张浪,刘彦青. 矿井智能通风与关键技术研究[J]. 煤炭科学技术,2024,52(1):178-195.

    ZHANG Lang,LIU Yanqing. Research on technology of key steps of intelligent ventilation in mines[J]. Coal Science and Technology,2024,52(1):178-195.

    [3]

    WANG Jinmiao,XIAO Jun,XUE Yan,et al. Optimization of airflow distribution in mine ventilation networks using the modified sooty tern optimization algorithm[J]. Mining,Metallurgy & Exploration,2024,41(1):239-257.

    [4] 吴新忠,韩正化,魏连江,等. 矿井风流智能按需调控算法与关键技术[J]. 中国矿业大学学报,2021,50(4):725-734.

    WU Xinzhong,HAN Zhenghua,WEI Lianjiang,et al. Intelligent on-demand adjustment algorithm and key technology of mine air flow[J]. Journal of China University of Mining and Technology,2021,50(4):725-734.

    [5] 贾进章,刘剑,倪景峰. 通风系统可靠性稳定性及灵敏性数学模型[J]. 辽宁工程技术大学学报(自然科学版),2003,22(6):725-727.

    JIA Jinzhang,LIU Jian,NI Jingfeng. Mathematical models for reliability stability and sensitivity of ventilation system[J]. Journal of Liaoning Technical University (Natural Science),2003,22(6):725-727.

    [6]

    CHATTERJEE A,ZHANG Lijun,XIA Xiaohua. Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff[J]. Applied Energy,2015,146:65-73. DOI: 10.1016/j.apenergy.2015.01.134

    [7]

    JIA Peng,JIA Jinzhang,SONG Lei,et al. Theory of RPOD adjustment of air volume for mine intelligent ventilation[J]. International Journal of Ventilation,2022,21(4):316-329. DOI: 10.1080/14733315.2021.1948720

    [8]

    LI Junqiao,LI Yucheng,ZHANG Wei,et al. Multi-objective intelligent decision and linkage control algorithm for mine ventilation[J]. Energies,2022,15(21). DOI: 10.3390/en15217980.

    [9] 吴新忠,张芝超,王凯,等. 基于DE−GWO算法的矿井风网风量调节方法[J]. 中南大学学报(自然科学版),2021,52(11):3981-3989.

    WU Xinzhong,ZHANG Zhichao,WANG Kai,et al. Method for adjusting air volume of mine ventilation network based on DE-GWO algorithm[J]. Journal of Central South University (Science and Technology),2021,52(11):3981-3989.

    [10] 许嘉琳. 改进鲸鱼算法在矿井风量智能调控中的研究[D]. 徐州:中国矿业大学,2023.

    XU Jialin. Research on improved whale algorithm in intelligent regulation of mine air volume[D]. Xuzhou:China University of Mining and Technology,2023.

    [11] 孙小玲,李端. 整数规划[M]. 北京:科学出版社,2010.

    SUN Xiaoling,LI Duan. Integer programming[M]. Beijing:Science Press,2010.

    [12] 张步忠,程玉胜,王一宾. 求解N皇后问题的片上多核并行混合遗传算法[J]. 计算机工程,2015,41(7):199-203.

    ZHANG Buzhong,CHENG Yusheng,WANG Yibin. On-chip multi-core parallel hybrid genetic algorithm for solving N-Queens problem[J]. Computer Engineering,2015,41(7):199-203.

    [13] 王燕军,梁治安,崔雪婷. 最优化基础理论与方法[M]. 2版. 上海:复旦大学出版社,2018.

    WANG Yanjun,LIANG Zhi'an,CUI Xueting. Basic theory and method of optimization[M]. 2nd ed. Shanghai:Fudan University Press,2018.

    [14]

    CHENG Shi,SHI Yuhui,QIN Quande,et al. Population diversity maintenance in brain storm optimization algorithm[J]. Journal of Artificial Intelligence and Soft Computing Research,2014,4(2):83-97. DOI: 10.1515/jaiscr-2015-0001

    [15] 李伟,霍永金,张浪,等. 矿井通风实时网络解算技术研究[J]. 中国矿业,2016,25(3):167-170. DOI: 10.3969/j.issn.1004-4051.2016.03.041

    LI Wei,HUO Yongjin,ZHANG Lang,et al. Research on ventilation real time network solution[J]. China Mining Magazine,2016,25(3):167-170. DOI: 10.3969/j.issn.1004-4051.2016.03.041

    [16] 刘彦青. 基于巷道摩擦阻力系数BP神经网络预测模型的矿井风网风量预测研究[J]. 矿业安全与环保,2021,48(2):101-106.

    LIU Yanqing. Study on the air quantity of mine ventilation network based on BP neural network prediction model of friction resistance coefficient in roadway[J]. Mining Safety & Environmental Protection,2021,48(2):101-106.

    [17]

    KARABOGA D,AKAY B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation,2009,214(1):108-132. DOI: 10.1016/j.amc.2009.03.090

    [18]

    YANG Jingyuan,CUI Jiangtao,XIA Xiaofang,et al. An artificial bee colony algorithm with an adaptive search strategy selection mechanism and its application on workload prediction[J]. Computers & Industrial Engineering,2024,189. DOI: 10.1016/j.cie.2024.109982.

    [19]

    SHI Y,EBERHART R. A modified particle swarm optimizer[C]. IEEE International Conference on Evolutionary Computation,Anchorage,1998:69-73.

    [20]

    WANG Hui,WU Zhijian,RAHNAMAYAN S,et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences,2011,181(20):4699-4714. DOI: 10.1016/j.ins.2011.03.016

    [21]

    ZHU Guopu,KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation,2010,217(7):3166-3173. DOI: 10.1016/j.amc.2010.08.049

    [22] 周新宇,吴志健,邓长寿,等. 一种邻域搜索的人工蜂群算法[J]. 中南大学学报(自然科学版),2015,46(2):534-546.

    ZHOU Xinyu,WU Zhijian,DENG Changshou,et al. Neighborhood search-based artificial bee colony algorithm[J]. Journal of Central South University (Science and Technology),2015,46(2):534-546.

图(2)  /  表(4)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-09
  • 修回日期:  2025-03-20
  • 网络出版日期:  2025-02-27
  • 刊出日期:  2025-03-14

目录

    /

    返回文章
    返回