基于DTW−Hilbert与改进K−means的谐振接地系统故障选线方法

张昭喜, 张宏乐, 黄衍法, 陈兴翔, 贾海成, 袁朋生

张昭喜,张宏乐,黄衍法,等. 基于DTW−Hilbert与改进K−means的谐振接地系统故障选线方法[J]. 工矿自动化,2024,50(11):169-178. DOI: 10.13272/j.issn.1671-251x.2024090076
引用本文: 张昭喜,张宏乐,黄衍法,等. 基于DTW−Hilbert与改进K−means的谐振接地系统故障选线方法[J]. 工矿自动化,2024,50(11):169-178. DOI: 10.13272/j.issn.1671-251x.2024090076
ZHANG Zhaoxi, ZHANG Hongle, HUANG Yanfa, et al. Fault line selection method for resonant grounding systems based on DTW-Hilbert and improved K-means[J]. Journal of Mine Automation,2024,50(11):169-178. DOI: 10.13272/j.issn.1671-251x.2024090076
Citation: ZHANG Zhaoxi, ZHANG Hongle, HUANG Yanfa, et al. Fault line selection method for resonant grounding systems based on DTW-Hilbert and improved K-means[J]. Journal of Mine Automation,2024,50(11):169-178. DOI: 10.13272/j.issn.1671-251x.2024090076

基于DTW−Hilbert与改进K−means的谐振接地系统故障选线方法

基金项目: 国家自然科学基金青年基金资助项目(52307155)。
详细信息
    作者简介:

    张昭喜(1980—),男,山东济宁人,高级工程师,主要从事煤矿安全、机电、选煤、节能等方面的研究工作,E-mail:751761560@qq.com

    通讯作者:

    袁朋生(1971—),男,湖南长沙人,高级工程师,博士,主要研究方向为电力系统自动化,E-mail:yps_gushi@163.com

  • 中图分类号: TD60

Fault line selection method for resonant grounding systems based on DTW-Hilbert and improved K-means

  • 摘要:

    受消弧线圈、过渡电阻、环境噪声等因素的影响,谐振接地系统故障信号特征微弱,且基于单一判据构成的故障选线方法难以保证选线结果的可靠性。针对上述问题,提出了一种基于动态时间弯曲(DTW)距离算法−Hilbert包络能量与改进K−means聚类算法的谐振接地系统故障选线方法。基于故障线路与健全线路波形相似度差距较大的原理,采用DTW距离算法定量刻画各线路电流序列之间的波形相似程度;为避免单一判据可能存在的选线盲区,基于故障线路与健全线路的能量系数区分度明显的原理,引入Hilbert包络能量衡量暂态零序电流信号中的高频分量幅值;为增强所提选线方法的数据处理能力与效率,采用改进K−means聚类算法对故障特征数据集进行分类处理,将各条线路的故障信息整理为故障数据集,作为改进K−means聚类算法的输入,聚类算法输出各条线路的聚类标签,依据聚类标签判定故障线路。仿真实验结果表明:① 该方法在面对不同过渡电阻、不同故障距离、不同故障初相角、不同线路结构等工况时,均可确保选线结果的准确性;② 相较于传统的K−means聚类算法,改进K−means聚类算法将选线准确率提升了3.4%。现场测试数据表明:该方法具有较强的抗噪声干扰能力,能够在强噪声环境下将保护的耐过渡电阻能力提升至3 000 Ω。

    Abstract:

    Due to the influence of factors such as arc suppression coils, transition resistance, and environmental noise, the fault signal characteristics in resonant grounding systems are weak. Furthermore, fault line selection methods based on a single criterion often fail to ensure the reliability of the results. To address these issues, this paper proposed a fault line selection method for resonant grounding systems based an dynamic time warping (DTW) distance algorithm-Hilbert envelope energy, and improved K-means clustering algorithm. Based on the principle that the waveform similarity between the faulted and healthy lines differs significantly, the DTW distance algorithm was first employed to quantitatively measure the similarity between current waveforms of each line. To avoid the potential blind spots of a single criterion, Hilbert envelope energy was introduced to measure the high-frequency components in the transient zero-sequence current signals, based on the principle that the energy coefficient distinguishes faulted and healthy lines clearly. Additionally, to enhance the data processing capability and efficiency of the proposed method, the improved K-means clustering algorithm was applied to classify the fault feature dataset. The fault data from each line were organized into a fault dataset, which served as the input to the improved K-means algorithm. The clustering algorithm output the cluster labels for each line, and the fault line was determined based on the cluster labels. Simulation results showed that: ① The method ensured accurate line selection results under various conditions, such as different transition resistances, fault distances, fault initial phase angles, and line structures. ② Compared with the traditional K-means clustering algorithm, the improved K-means algorithm improved the line selection accuracy by 3.4%. Field test data demonstrated the strong noise immunity of the method, improving the protection's tolerance to transition resistance up to 3 000 Ω in a high-noise environment.

  • 图  1   改进K−means聚类算法流程

    Figure  1.   Improved K-means algorithm flow

    图  2   10 kV配电系统仿真结构

    Figure  2.   Simulation structure of 10 kV power distribution system

    图  3   不同故障工况下各线路的距离系数

    Figure  3.   Distance coefficients of each line under different fault cases

    图  4   不同故障工况下各线路的能量系数

    Figure  4.   Energy coefficients of each line under different fault cases

    图  5   聚类结果

    Figure  5.   Clustering results

    图  6   调整线路长度后的仿真拓扑

    Figure  6.   Simulation topology after adjusting line length

    图  7   线路L1发生1 000 Ω接地故障现场录波

    Figure  7.   Field recording of a 1 000 Ω grounding fault on line L1

    图  8   低压等值实验平台

    Figure  8.   Low-voltage equivalent experimental platform

    表  1   单位长度线路参数

    Table  1   Line parameters per unit length

    线路类型 相序 电阻/(Ω·km−1 电感/(mH·km−1 电容/(μF·km−1
    架空线正序0.1701.2160.098
    零序0.2325.4690.006
    电缆线正序0.2700.2550.339
    零序2.7001.0160.275
    下载: 导出CSV

    表  2   部分案例的故障特征量及选线结果

    Table  2   Fault characteristics and line selection results for selected cases

    故障线路/故障位置/
    过渡电阻/故障初相角
    故障特征量[$ \rho_n,h_n $] 聚类标签 选线
    结果
    是否
    正确
    L1 L2 L3 L4
    L1/2 km/500 Ω/90° [1.000 00.693 9] [0.662 1,0.000 1] [0.415 3,0.096 8] [0.413 8,0.209 3] [2 1 1 1] L1 正确
    L1/5 km/500 Ω/90° [1.000 00.676 9] [0.568 6,0.000 1] [0.398 2,0.134 5] [0.398 8,0.188 5] [2 1 1 1] L1 正确
    L1/10 km/100 Ω/0 [1.000 00.743 0] [0.335 6,0.000 04] [0.334 8,0.110 0] [0.335 1,0.147 0] [2 1 1 1] L1 正确
    L2/3 km/100 Ω/45° [0.555 4,0.000 2] [1.000 00.679 7] [0.376 2,0.144 9] [0.370 2,0.175 2] [1 2 1 1] L2 正确
    L2/8 km/100 Ω/45° [0.572 8,0.000 2] [1.000 00.677 7] [0.375 9,0.141 3] [0.371 1,0.180 8] [1 2 1 1] L2 正确
    L2/8 km/500 Ω/90° [0.652 3,0.012 5] [1.000 00.589 0] [0.478 3,0.137 4] [0.524 6,0.261 0] [1 2 1 1] L2 正确
    L3/2 km/100 Ω/0 [0.348 8,0.000 05] [0.344 5,0.000 03] [1.000 00.987 7] [0.346 8,0.012 3] [1 1 2 1] L3 正确
    L3/2 km/100 Ω/45° [0.570 2,0.021 6] [0.791 1,0.000 2] [1.000 00.553 7] [0.521 6,0.424 5] [1 1 2 1] L3 正确
    L4/4 km/150Ω/45° [0.424 3,0.000 4] [0.430 6,0.000 2] [0.422 8,0.447 1] [1.000 00.552 3] [1 1 1 2] L4 正确
    L4/6 km/200 Ω/90° [0.593 2,0.000 3] [0.588 9,0.000 2] [0.531 4,0.486 8] [1.000 00.512 7] [1 1 1 2] L4 正确
    下载: 导出CSV

    表  3   不同过渡电阻时的选线结果

    Table  3   Line selection results at different transition resistances

    过渡
    电阻/Ω
    故障特征量
    $\left[\rho_1, \rho_2, \rho_3, \rho_4, h_1, h_2, h_3, h_4\right] $
    聚类
    标签
    选线
    结果
    10 [1.0000,0.4124,0.3548,0.3555,
    0.6117,0.0001,0.1633,0.2249]
    [2 1 1 1] L1
    100 [1.0000,0.4489,0.3539,0.3564,
    0.5273,0.0001,0.2014,0.2712]
    [2 1 1 1] L1
    200 [1.0000,0.6462,0.3882,0.3868,
    0.5590,0.0001,0.2163,0.2246]
    [2 1 1 1] L1
    500 [1.0000,0.7751,0.4283,0.4274,
    0.5939,0.0001,0.2095,0.1966]
    [2 1 1 1] L1
    1 000 [1.0000,0.7472,0.4283,0.4271,
    0.5484,0.00004,0.1894,0.2622]
    [2 1 1 1] L1
    1 500 [1.0000,0.7182,0.4250,0.4244,
    0.5304,0.00003,0.1901,0.2795]
    [2 1 1 1] L1
    下载: 导出CSV

    表  4   不同故障距离时的选线结果

    Table  4   Line selection results at different fault distances

    故障
    位置/km
    故障特征量
    $\left[\rho_1, \rho_2, \rho_3, \rho_4, h_1, h_2, h_3, h_4\right] $
    聚类
    标签
    选线
    结果
    2 [0.7171,0.6576,0.6872,1.0000,
    0.0270,0.0003,0.4621,0.5106]
    [1 1 1 2] L4
    4 [0.4243,0.4306,0.4228,1.0000,
    0.0004,0.0002,0.4471,0.5523]
    [1 1 1 2] L4
    6 [0.5683,0.5640,0.5107,1.0000,
    0.0003,0.0002,0.4891,0.5104]
    [1 1 1 2] L4
    8 [0.5687,0.5830,0.6992,1.0000,
    0.0199,0.0002,0.4734,0.5066]
    [1 1 1 2] L4
    11 [0.5340,0.5328,0.5710,1.0000,
    0.0003,0.0099,0.4857,0.5041]
    [1 1 1 2] L4
    下载: 导出CSV

    表  5   不同故障初相角时的选线结果

    Table  5   Line selection results at different fault initial phase angles

    故障
    初相角/(°)
    故障特征量
    $\left[\rho_1, \rho_2, \rho_3, \rho_4, h_1, h_2, h_3, h_4\right] $
    聚类
    标签
    选线
    结果
    0 [0.3372,1.0000,0.3356,0.3359,
    0.0001,0.7453,0.1090,0.1457]
    [1 2 1 1] L2
    30 [0.5624,1.0000,0.3714,0.3705,
    0.0001,0.6937,0.1327,0.1735]
    [1 2 1 1] L2
    45 [0.4416,1.0000,0.3482,0.3561,
    0.0001,0.6736,0.1408,0.1854]
    [1 2 1 1] L2
    60 [0.4311,1.0000,0.3645,0.3758,
    0.0002,0.6400,0.1551,0.2047]
    [1 2 1 1] L2
    90 [0.4266,1.0000,0.3804,0.3919,
    0.0002,0.5730,0.1839,0.2429]
    [1 2 1 1] L2
    下载: 导出CSV

    表  6   不同线路长度组合下故障选线结果

    Table  6   Fault line selection results for different combinations of line lengths

    过渡电阻/Ω 故障特征量
    [ρ12,ρ3,ρ4,h1,h2,h3,h4]
    聚类
    标签
    选线
    结果
    500 [0.3356,0.3355,1.0000,0.3373,
    0.0411,0.0564,0.6374,0.2651]
    [1 1 2 1] L3
    1000 [0.3360,0.3359,1.0000,0.3379,
    0.0448,0.0614,0.6044,0.2893]
    [1 1 2 1] L3
    1500 [0.3362,0.3361,1.0000,0.3382,
    0.0451,0.0618,0.6015,0.2915]
    [1 1 2 1] L3
    2000 [0.3364,0.3363,1.0000,0.3385,
    0.0452,0.0620,0.6200,0.2924]
    [1 1 2 1] L3
    3000 [0.3365,0.3364,1.0000,0.3387,
    0.0454,0.0623,0.5985,0.2938]
    [1 1 2 1] L3
    下载: 导出CSV

    表  7   不同聚类算法评价指标对比

    Table  7   Comparison of evaluation indicators for different clustering algorithms

    聚类算法 选线正确率/% 轮廓系数
    K−means聚类 94.8 0.81
    改进K−means聚类 98.2 0.88
    模糊C均值聚类 93.9 0.79
    层次聚类 93.0 0.79
    谱聚类 82.5 0.69
    下载: 导出CSV

    表  8   实测数据选线结果

    Table  8   Line selection results based on measured data

    过渡电阻/Ω故障特征量
    [ρ12,ρ3,ρ4,h1,h2,h3,h4]
    聚类
    标签
    是否
    正确
    500[1.0000,0.3963,0.3880,0.3668,
    0.8528,0.1009,0.0280,0.0183]
    [2 1 1 1]正确
    1 000[1.0000,0.4800,0.4830,0.5008,
    0.8587,0.0709,0.0447,0.0257]
    [2 1 1 1]正确
    2 000[1.0000,0.4583,0.4857,0.5446,
    0.6308,0.1776,0.1090,0.0827]
    [2 1 1 1]正确
    3 000[1.0000,0.6025,0.5851,0.6753,
    0.6340,0.0823,0.1466,0.1371]
    [2 1 1 1]正确
    下载: 导出CSV
  • [1] 徐丙垠. 现代配电网继电保护技术及其发展[J]. 供用电,2024,41(8):65-74,87.

    XU Bingyin. Modern distribution systems relay protection technology and its development[J]. Distribution & Utilization,2024,41(8):65-74,87.

    [2] 于洋,范荣奇,徐丙垠,等. 小电流接地故障保护技术及其发展[J]. 供用电,2023,40(2):1-8.

    YU Yang,FAN Rongqi,XU Bingyin,et al. Small current earth fault protection and its developments[J]. Distribution & Utilization,2023,40(2):1-8.

    [3] Q/GDW 370—2009 城市配电网技术导则[S].

    Q/GDW 370-2009 Technical guidelines for urban distribution networks[S].

    [4] 刘宝稳,万子雄,曾祥君,等. 基于有源消弧暂态衰减信息的配电网接地故障跟踪检测方法[J]. 中国电机工程学报,2024,44(2):464-476.

    LIU Baowen,WAN Zixiong,ZENG Xiangjun,et al. Ground fault tracking and detection of distribution network based on transient attenuation information of active arc-suppression process[J]. Proceedings of the CSEE,2024,44(2):464-476.

    [5] 崔智明. 煤矿井下低压供电系统远程集控漏电试验平台设计研究[J]. 中国煤炭,2024,50(1):101-107.

    CUI Zhiming. Design and research of remote control leakage test platform for underground low voltage power supply system in coal mine[J]. China Coal,2024,50(1):101-107.

    [6] 王清亮,杨博,高梅,等. 基于等效电导的矿井电网智能漏电保护方法[J]. 工矿自动化,2020,46(6):59-64.

    WANG Qingliang,YANG Bo,GAO Mei,et al. Intelligent leakage protection method of mine power grid based on equivalent conductance[J]. Industry and Mine Automation,2020,46(6):59-64.

    [7] 高启业,李军. 煤矿供电智能化建设关键技术[J]. 煤矿安全,2021,52(6):153-157.

    GAO Qiye,LI Jun. Key technologies for intelligent construction of power supply in coal mines[J]. Safety in Coal Mines,2021,52(6):153-157.

    [8] 孙其东,张开如,刘建,等. 基于五次谐波和小波重构能量的配电网单相接地故障的选线方法研究[J]. 电测与仪表,2016,53(16):1-4. DOI: 10.3969/j.issn.1001-1390.2016.16.001

    SUN Qidong,ZHANG Kairu,LIU Jian,et al. Research on single-phase fault earth fault line selection method for the distribution network based on fifth harmonics and wavelet reconstruction[J]. Electrical Measurement & Instrumentation,2016,53(16):1-4. DOI: 10.3969/j.issn.1001-1390.2016.16.001

    [9] 李晓波,张世乐,谢剑锋,等. 计及电网参数不平衡的灵活接地系统高阻接地故障选线方法[J/OL]. 电力系统保护与控制:1-10[2024-08-23]. https://doi.org/10.19783/j.cnki.pspc.240302.

    LI Xiaobo,ZHAGN Shile,XIE Jianfeng,et al. A fiexible grounding system high resistance grounding fault line selection method considering unbalance power grid parameters[J]. Power System Protection and Control:1-10[2024-08-23]. https://doi.org/10.19783/j.cnki.pspc.240302.

    [10] 王清亮,赵东强,邵磊,等. 适用于矿山电网的单相接地故障选线新方法[J]. 工矿自动化,2016,42(10):40-44.

    WANG Qingliang,ZHAO Dongqiang,SHAO Lei,et al. A novel line selection method of single phase grounding fault suitable for coal mine power network[J]. Industry and Mine Automation,2016,42(10):40-44.

    [11] 刘宝稳,曾祥君,张慧芬,等. 有源柔性接地配电网弧光高阻接地故障检测方法[J]. 中国电机工程学报,2022,42(11):4001-4013.

    LIU Baowen,ZENG Xiangjun,ZHANG Huifen,et al. Arc high resistance grounding fault detection method for active flexible grounding distribution network[J]. Proceedings of the CSEE,2022,42(11):4001-4013.

    [12] 刘宝稳,曾祥君,张慧芬,等. 注入电流馈线分布特征及其在接地故障检测中的应用[J]. 电网技术,2021,45(7):2731-2740.

    LIU Baowen,ZENG Xiangjun,ZHANG Huifen,et al. Distribution model of injection current in feeder and its application in single phase to ground fault detection[J]. Power System Technology,2021,45(7):2731-2740.

    [13] 王晓卫,高杰,魏向向,等. 基于小波包−贝叶斯的小电流接地系统故障选线方法[J]. 工矿自动化,2014,40(6):54-59.

    WANG Xiaowei,GAO Jie,WEI Xiangxiang,et al. A fault line selection method of small current grounding system based on wavelet packet and Bayes theory[J]. Industry and Mine Automation,2014,40(6):54-59.

    [14] 曾哲,邓丰,张振,等. 基于VMD−WVD的故障行波全波形时−频分析方法[J]. 电力系统保护与控制,2022,50(7):49-57.

    ZENG Zhe,DENG Feng,ZHANG Zhen,et al. Time-frequency analysis of a traveling wave based on VMD and WVD[J]. Power System Protection and Control,2022,50(7):49-57.

    [15] 贾清泉,石磊磊,王宁,等. 基于证据理论和信息熵的消弧线圈接地电网融合选线方法[J]. 电工技术学报,2012,27(6):191-197.

    JIA Qingquan,SHI Leilei,WANG Ning,et al. A fusion method for ground fault line detection in compensated power networks based on evidence theory and information entropy[J]. Transactions of China Electrotechnical Society,2012,27(6):191-197.

    [16]

    ZHOU Niancheng,WANG Jian,WANG Qianggang. A novel estimation method of metering errors of electric energy based on membership cloud and dynamic time warping[J]. IEEE Transactions on Smart Grid,2017,8(3):1318-1329. DOI: 10.1109/TSG.2016.2619375

    [17] 庄胜斌,缪希仁,江灏,等. 基于改进欧氏−动态时间弯曲距离的谐振接地配电网单相高阻接地故障选线方法[J]. 电网技术,2020,44(1):273-281.

    ZHUANG Shengbin,MIAO Xiren,JIANG Hao,et al. A line selection method for single-phase high-impedance grounding fault in resonant grounding system of distribution network based on improved euclidean-dynamic time warping distance[J]. Power System Technology,2020,44(1):273-281.

    [18] 史鸿飞,邓丰,钟航,等. 基于暂态时−频特征差异的配电网高阻接地故障识别方法[J]. 中国电机工程学报,2024,44(16):6455-6470.

    SHI Hongfei,DENG Feng,ZHONG Hang,et al. Identification method of high impedance fault in distribution network based on transient time-frequency characteristic difference[J]. Proceedings of the CSEE,2024,44(16):6455-6470.

    [19] 欧逸哲,术茜. 基于SOM和K均值聚类的谐振接地系统故障选线及区段定位方法[J]. 电气技术,2023,24(10):23-30. DOI: 10.3969/j.issn.1673-3800.2023.10.004

    OU Yizhe,ZHU Xi. Fault line detection and fault section location method in resonant grounding systems based on SOM and K-means clustering[J]. Electrical Engineering,2023,24(10):23-30. DOI: 10.3969/j.issn.1673-3800.2023.10.004

    [20] 李梦涵. 小电流系统单相接地故障选线方法研究[D]. 西安:西安理工大学,2021.

    LI Menghan. Study on line selection method of single-phase grounding fault in small current system[D]. Xi'an:Xi'an University of Technology,2021.

    [21] 杨俊闯,赵超. K−Means聚类算法研究综述[J]. 计算机工程与应用,2019,55(23):7-14,63. DOI: 10.3778/j.issn.1002-8331.1908-0347

    YANG Junchuang,ZHAO Chao. Survey on K-Means clustering algorithm[J]. Computer Engineering and Applications,2019,55(23):7-14,63. DOI: 10.3778/j.issn.1002-8331.1908-0347

    [22] 杨善林,李永森,胡笑旋,等. K−Means算法中的K值优化问题研究[J]. 系统工程理论与实践,2006(2):97-101. DOI: 10.3321/j.issn:1000-6788.2006.02.013

    YANG Shanlin,LI Yongsen,HU Xiaoxuan,et al. Optimization study on K value of K-Means algorithm[J]. Systems Engineering-Theory & Practice,2006(2):97-101. DOI: 10.3321/j.issn:1000-6788.2006.02.013

  • 期刊类型引用(2)

    1. 谢棋军,底青云,杨永友,刘庆波,张辉,马良令. 旋转导向系统中非接触电能与信号一体化传输技术. 地球物理学报. 2023(01): 101-110 . 百度学术
    2. 杨云翠,余力俊,范成刚,刘健成,潘林粉. 含电池储能的直流配电网拓扑优化控制方法. 自动化应用. 2023(24): 195-197 . 百度学术

    其他类型引用(1)

图(8)  /  表(8)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  9
  • PDF下载量:  13
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-09-19
  • 修回日期:  2024-10-28
  • 网络出版日期:  2024-10-28
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回