Design of a miniaturized bidirectional beam mine positioning terminal antenna
-
摘要:
双向天线可有效提高信号覆盖范围和天线耦合效率,削弱由巷道侧壁反射所带来的多径效应,适用于结构狭长、断面较小的煤矿井下巷道。针对现有双向天线尺寸大、增益低、带宽不满足井下UWB精确定位系统要求等问题,设计了一种小型化双向波束矿用定位终端天线。通过布置2个等幅同相U形单极子天线并在金属地板上引入U形槽结构,在保证天线整体结构紧凑的同时,实现了双向边射波束辐射特性。仿真和实测结果表明:天线的−10 dB带宽为1GHz(3.6~4.6 GHz),可有效覆盖煤矿井下UWB人员精确定位系统的工作频段(3.7~4.2 GHz);在3.6~4.6 GHz频段内,天线峰值增益为2.2~2.5 dBi,具有良好的幅频响应。
Abstract:Bidirectional antennas can effectively improve signal coverage and antenna coupling efficiency, and weaken multipath effects caused by reflections from roadway sidewalls. These characteristics make them suitable for underground coal mine roadways with narrow structures and small cross-section. To address the problems of large size, low gain, and insufficient bandwidth of existing bidirectional antennas that do not meet the requirements of underground ultra-wide band (UWB) precise positioning systems, a miniaturized bidirectional beam mine positioning terminal antenna was designed. By arranging two equal-amplitude, in-phase U-shaped monopole antennas and introducing a U-shaped slot structure on the metal floor, the radiation characteristics of the bidirectional side-beam were realized while ensuring the compact structure of the antennas. Simulation and experimental results demonstrated that the antenna achieved a −10 dB bandwidth of 1 GHz (3.6-4.6 GHz), effectively covering the operational frequency band (3.7-4.2 GHz) of UWB personnel precise positioning systems in coal mines. Within the frequency band of 3.6-4.6 GHz, the antenna achieved a peak gain of 2.2-2.5 dBi, with good amplitude-frequency response.
-
-
表 1 天线尺寸参数
Table 1 Antenna dimension parameters
mm 参数 尺寸 参数 尺寸 参数 尺寸 H1 0.45 Wf1 0.36 Ws1 0.5 H2 0.2 Wf2 0.6 Ws2 1.88 S1 11.5 Wf3 0.36 Wa1 1.48 S2 5 Ls1 5.5 Wa2 0.7 S3 8.6 Ls2 5.75 Wa3 1.2 S4 4.75 La1 5.5 Wa4 2.7 G1 25 La2 5.7 g 0.4 G2 25 La3 3.05 -
[1] 孙继平. 矿井人员位置监测技术[J]. 工矿自动化,2023,49(6):41-47. SUN Jiping. Mine personnel position monitoring technology[J]. Journal of Mine Automation,2023,49(6):41-47.
[2] 李明锋,李䶮,刘用,等. 基于5G+UWB和惯导技术的井下人员定位系统[J]. 工矿自动化,2024,50(1):25-34. LI Mingfeng,LI Yan,LIU Yong,et al. Underground personnel positioning system based on 5G+UWB and inertial navigation technology[J]. Journal of Mine Automation,2024,50(1):25-34.
[3] 杜春晖. 基于多技术融合的煤矿井下采掘运输设备防碰撞系统[J]. 煤炭学报,2020,45(增刊2):1060-1068. DU Chunhui. Anti-collision system of mining and transportation equipment in coal mine based on multi-technology integration[J]. Journal of China Coal Society,2020,45(S2):1060-1068.
[4] 韩江洪,卫星,陆阳,等. 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报,2020,45(6):2104-2115. HAN Jianghong,WEI Xing,LU Yang,et al. Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society,2020,45(6):2104-2115.
[5] 葛世荣,王世佳,曹波,等. 智能采运机组自主定位原理与技术[J]. 煤炭学报,2022,47(1):75-86. GE Shirong,WANG Shijia,CAO Bo,et al. Autonomous positioning principle and technology of intelligent shearer and conveyor[J]. Journal of China Coal Society,2022,47(1):75-86.
[6] 刘超,符世琛,成龙,等. 基于TSOA定位原理混合算法的掘进机位姿检测方法[J]. 煤炭学报,2019,44(4):1255-1264. LIU Chao,FU Shichen,CHENG Long,et al. Pose detection method based on hybrid algorithm of TSOA positioning principle for roadheader[J]. Journal of China Coal Society,2019,44(4):1255-1264.
[7] 韩梦辉,曹波,王世博,等. 矩形矿井巷道内UWB路径损耗研究[J]. 煤炭技术,2024,43(10):218-222. HAN Menghui,CAO Bo,WANG Shibo,et al. Study on UWB path loss in rectangular mine roadway[J]. Coal Technology,2024,43(10):218-222.
[8] ZHOU Chenming,PLASS T,JACKSHA R,et al. RF propagation in mines and tunnels:extensive measurements for vertically,horizontally,and cross-polarized signals in mines and tunnels[J]. IEEE Antennas and Propagation Magazine,2015,57(4):88-102. DOI: 10.1109/MAP.2015.2453881
[9] 霍羽,徐钊,刘逢雪. 融合波模和射线理论的矿井电波传播模型[J]. 电子学报,2013,41(1):110-116. DOI: 10.3969/j.issn.0372-2112.2013.01.020 HUO Yu,XU Zhao,LIU Fengxue. A wave propagation model combined the modal theory and ray theory in coal mine tunnels[J]. Acta Electronica Sinica,2013,41(1):110-116. DOI: 10.3969/j.issn.0372-2112.2013.01.020
[10] 霍羽,徐钊,郑红党. 矩形隧道中的多波模传播特性[J]. 电波科学学报,2010,25(6):1225-1230. HUO Yu,XU Zhao,ZHENG Hongdang. Characteristics of multimode propagation in rectangular tunnels[J]. Chinese Journal of Radio Science,2010,25(6):1225-1230.
[11] 霍羽,刘逢雪,徐钊. 煤矿井巷天线位置对辐射场分布的影响[J]. 煤炭学报,2013,38(4):715-720. HUO Yu,LIU Fengxue,XU Zhao. Effect of antenna location on radiation field distribution in coal mine tunnels[J]. Journal of China Coal Society,2013,38(4):715-720.
[12] GRAJEK P R,SCHOENLINNER B,REBEIZ G M. A 24-GHz high-gain Yagi-Uda antenna array[J]. IEEE Transactions on Antennas and Propagation,2004,52(5):1257-1261. DOI: 10.1109/TAP.2004.827543
[13] ZHANG J,ZHANG X M,LIU J S,et al. Dual-band bidirectional high gain antenna for WLAN 2.4/5.8 GHz applications[J]. Electronics Letters,2009,45(1):6-7. DOI: 10.1049/el:20092617
[14] CHEN S Y. Broadband slot-type Bruce array fed by a microstrip-to-slotline T-junction[J]. IEEE Antennas and Wireless Propagation Letters,2009,8:116-119. DOI: 10.1109/LAWP.2008.2012278
[15] LIU Wendong,ZHANG Zhijun,TIAN Zijian,et al. A bidirectional high-gain cascaded ring antenna for communication in coal mine[J]. IEEE Antennas and Wireless Propagation Letters,2013,12:761-764. DOI: 10.1109/LAWP.2013.2270936
[16] LIU Longsheng,ZHANG Zhijun,TIAN Zijian,et al. A bidirectional endfire array with compact antenna elements for coal mine/tunnel communication[J]. IEEE Antennas and Wireless Propagation Letters,2012,11:342-345. DOI: 10.1109/LAWP.2012.2191383
[17] EUBANKS T W,CHANG Kai. A compact parallel-plane perpendicular-current feed for a modified equiangular spiral antenna[J]. IEEE Transactions on Antennas and Propagation,2010,58(7):2193-2202. DOI: 10.1109/TAP.2010.2048856
[18] LI Yue,ZHANG Zhijun,CHEN Wenhua,et al. A dual-polarization slot antenna using a compact CPW feeding structure[J]. IEEE Antennas and Wireless Propagation Letters,2010,9:191-194. DOI: 10.1109/LAWP.2010.2044865
[19] IWASAKI H. Microstrip antenna with back-to-back configuration relative to a slot on a ground plane[J]. Electronics Letters,1998,34(14):1373-1374. DOI: 10.1049/el:19980998
[20] 李烨. 面向5G大规模MIMO天线阵的一体式滤波技术研究[D]. 苏州:苏州大学,2021. LI Ye. Research on integrated filtering technology for 5G massive MIMO antenna array[D]. Suzhou:Soochow University,2021.
[21] 吕瑞杰. 煤矿井下UWB信号路径损耗测量及中心频率选择[J]. 工矿自动化,2023,49(4):147-152. LYU Ruijie. Measurement of UWB signal path loss and center frequency selection in underground coal mines[J]. Journal of Mine Automation,2023,49(4):147-152.
-
期刊类型引用(22)
1. 王浩. 选煤厂自动加介质系统的设计. 机械制造. 2024(02): 53-55 . 百度学术
2. 刘新辉,袁雪,吕鹏辉,雷伟刚,薛振磊,卜祥宁,沙杰. 选煤厂重介质分选工艺智能化改造及应用. 煤炭加工与综合利用. 2024(03): 10-13+17 . 百度学术
3. 申杰. 选煤厂自动化重介质分选技术的应用分析. 矿业装备. 2024(05): 198-200 . 百度学术
4. 倪云峰,魏富太,郭苹. 重介质分选过程中悬浮液密度和黏度控制算法研究. 煤炭技术. 2024(08): 296-299 . 百度学术
5. 张文军. 选煤厂生产线调度最优决策专家系统设计. 自动化仪表. 2024(07): 75-79 . 百度学术
6. 张军,蔚文朋,张硕,姜坤坤,王杰,李少宁,董良,代伟. 基于云熵优化的云模型-组合赋权煤炭分选工艺综合评价方法. 洁净煤技术. 2024(S2): 508-514 . 百度学术
7. 王美君,谭章禄,吕晗冰,桂谕典. 选煤厂智能化建设技术架构与技术策略研究. 矿业科学学报. 2024(06): 1017-1026 . 百度学术
8. 郎艳波. 重介质选煤装备的智能化设计改造及应用. 机械研究与应用. 2023(01): 136-139+143 . 百度学术
9. 班海俊,武源,张锦龙,刘诗宇,常艇. 李家壕选煤厂智能加介系统研究. 煤炭工程. 2023(04): 168-172 . 百度学术
10. 柴进,张海斌,高平小,王湛,乔宏. 基于特征融合的选煤厂振动筛故障诊断方法. 煤炭工程. 2023(06): 158-163 . 百度学术
11. 代伟,王昱栋,彭勇. 重介质选煤过程数学模型的研究现状与展望. 控制工程. 2023(10): 1759-1766 . 百度学术
12. 吴毅刚,朱陈雨. 重介质悬浮液密度的压差式测量方法研究现状及趋势. 煤炭加工与综合利用. 2023(10): 20-24+28 . 百度学术
13. 司海波. 重介质洗煤自动控制系统设计研究. 机械管理开发. 2022(08): 257-259 . 百度学术
14. 代伟,王昱栋,董良,赵跃民. 煤炭智能重介分选技术进展与探索. 工矿自动化. 2022(11): 20-26+44 . 本站查看
15. 周增宏. 选煤厂制介及加介系统设计与应用. 陕西煤炭. 2021(01): 162-166+173 . 百度学术
16. 寇金成. 选煤厂重介质悬浮液密度控制方案优化. 山西焦煤科技. 2021(03): 41-43 . 百度学术
17. 王庆飞,齐健,王洪兵. 乌东选煤厂重介质浅槽分选系统的分选试验研究. 能源与环保. 2021(09): 260-265 . 百度学术
18. 汤优优,喻连香,陈雄. 重介质选矿技术在处理有色金属矿和非金属矿的研究现状及展望. 矿产综合利用. 2021(04): 118-124 . 百度学术
19. 王光辉,彭勇,代伟,董良,马小平. 基于灵敏度分析与增强捕食-食饵优化的重介质选煤过程动态模型. 煤炭学报. 2021(09): 2813-2823 . 百度学术
20. 邢欢,周增宏. 一种射流喷射式自动加介系统. 洁净煤技术. 2021(S1): 97-101 . 百度学术
21. 李志军,韩伟,王光辉. 基于DASCN的重介质浅槽分选灰分预测. 煤炭工程. 2021(S1): 122-126 . 百度学术
22. 钱丽霞. 选煤厂智能介质添加系统研究. 内蒙古煤炭经济. 2021(21): 55-57 . 百度学术
其他类型引用(7)