基于改进卡尔曼滤波和状态观测器的井下信号灯闭锁控制

汪学明, 黄竞智, 宋传智, 吴代丰

汪学明,黄竞智,宋传智,等. 基于改进卡尔曼滤波和状态观测器的井下信号灯闭锁控制[J]. 工矿自动化,2024,50(11):118-126, 141. DOI: 10.13272/j.issn.1671-251x.2024080066
引用本文: 汪学明,黄竞智,宋传智,等. 基于改进卡尔曼滤波和状态观测器的井下信号灯闭锁控制[J]. 工矿自动化,2024,50(11):118-126, 141. DOI: 10.13272/j.issn.1671-251x.2024080066
WANG Xueming, HUANG Jingzhi, SONG Chuanzhi, et al. Locking control of underground signal lights based on improved Kalman filter and state observer[J]. Journal of Mine Automation,2024,50(11):118-126, 141. DOI: 10.13272/j.issn.1671-251x.2024080066
Citation: WANG Xueming, HUANG Jingzhi, SONG Chuanzhi, et al. Locking control of underground signal lights based on improved Kalman filter and state observer[J]. Journal of Mine Automation,2024,50(11):118-126, 141. DOI: 10.13272/j.issn.1671-251x.2024080066

基于改进卡尔曼滤波和状态观测器的井下信号灯闭锁控制

基金项目: 西藏自治区科技计划重点研发项目(XZ202301ZY0002G);中国煤炭科工集团常州研究院研发项目(2022GY0004);天地(常州)自动化股份有限公司研发项目(2023GY2013 )。
详细信息
    作者简介:

    汪学明(1983— ),男,安徽太湖人,副研究员,硕士,主要研究方向为矿山自动化与智能化,E-mail:wang83@126.com

  • 中图分类号: TD525

Locking control of underground signal lights based on improved Kalman filter and state observer

  • 摘要:

    在非煤矿山井下斜坡道运输过程中,由于井下UWB动态定位精度不足、车辆定位卡采样间隔长和数据丢失等,传统信号灯闭锁控制方法效果较差。针对该问题,提出一种基于改进卡尔曼滤波和状态观测器的井下信号灯闭锁控制方法。分析了基于UWB的井下车辆定位原理,给出了适合非煤矿山井下特点的信号灯逻辑判定方法。提出一种强跟踪卡尔曼滤波算法,通过强跟踪自适应方式对卡尔曼滤波算法进行改进,在计算预测误差时加入时变渐消因子,提高定位精度;根据滤波后所得的后验距离与速度值预测出车辆到达门限的时间,解决离散数据采集导致的控制滞后性问题,提高信号灯闭锁的可靠性和及时性。采用远程状态观测器评估信号灯闭锁控制效果,基于时域自动跟踪的统计,实现了闭锁可靠性的量化评估。仿真结果表明,改进卡尔曼滤波算法后,车辆动态与静态位置误差分别降低25.67%和27.19%,动态与静态速度误差分别降低25.28%和34.73%,信号灯门限逻辑响应更快。井下工业性试验和应用结果表明,采用强跟踪尔曼滤算法后,井下信号闭锁成功率达99.5%以上,有效提高了井下斜坡道岔路口信号闭锁控制的实时性和可靠性,保障了井下车辆的安全行驶。

    Abstract:

    During underground ramp transportation in non-coal mines, traditional signal light locking control method is ineffective due to insufficient UWB dynamic positioning accuracy, long sampling interval of vehicle positioning cards, and data loss. Aiming at this problem, this paper proposed a locking control method of underground signal lights based on improved Kalman filter and state observer. The underground vehicle positioning principle based on UWB was analyzed, and a signal light logic determination method tailored to the characteristics of non-coal mine operation was provided. A strong tracking Kalman filter algorithm was introduced, and it was improved through strong tracking adaptive method. A time-varying fading factor was incorporated in the calculation of prediction errors, improving the positioning accuracy. According to the filtered posterior distance and speed values, the time for the vehicle to reach the threshold was predicted, solving the problem of control lag caused by discrete data acquisition and improving the reliability and timeliness of signal light locking. A remote state observer was used to evaluate the performance of signal light locking control. Based on statistics of the time domain automatic tracking, the quantitative evaluation of the locking reliability was realized. Simulation results demonstrated that after improving Kalman filter algorithm, the dynamic and static position errors of the vehicle were reduced by 25.67% and 27.19%, respectively, the dynamic and static speed errors were reduced by 25.28% and 34.73%, respectively. The logic response of the signal light threshold was faster. Results from underground industrial trials and applications showed that the success rate of underground signal locking was over 99.5% after using the strong tracking Kalman filter algorithm, which effectively improved the real-time performance and reliability of signal locking control of underground ramp intersections and ensured the safe driving of underground vehicles.

  • 图  1   定位分站及天线

    Figure  1.   Positioning substation and antennas

    图  2   车辆定位原理

    Figure  2.   Vehicle positioning principle

    图  3   区域划分

    Figure  3.   Regional division

    图  4   井下弯道拆解

    Figure  4.   Disassembly of underground bends

    图  5   车辆行驶状态判定流程

    Figure  5.   Vehicle driving status determination process

    图  6   车辆位置区分门限

    Figure  6.   Vehicle position differentiation threshold

    图  7   未入列状态

    Figure  7.   Non-queueing state

    图  8   入列限行状态

    Figure  8.   Restricted access queueing state

    图  9   关联闭锁状态

    Figure  9.   Associated locking status

    图  10   区间闭锁状态

    Figure  10.   Interval locking state

    图  11   车辆饱和限行

    Figure  11.   Vehicle saturation limit

    图  12   辅助信号灯

    Figure  12.   Auxiliary signal lights

    图  13   定时采样位置

    Figure  13.   Timed sampling positions

    图  14   车辆测距结果滤波前后对比

    Figure  14.   Comparison of vehicle distance measurement results before and after filtering

    图  15   测距误差滤波前后对比

    Figure  15.   Comparison of distance measurement error before and after filtering

    图  16   车辆速度滤波前后对比

    Figure  16.   Comparison of vehicle speeds before and after filtering

    图  17   主要设备布置

    Figure  17.   Main equipment layout

    图  18   工业现场状态观测器记录数据

    Figure  18.   Data recorded by industrial field state observer

    图  19   滤波前后信号灯闭锁成功率对比

    Figure  19.   Comparison of the success rate of signal light locking before and after filtering

    表  1   门限预测结果

    Table  1   Threshold prediction results

    组别时刻位置/cm时间/ms
    1前一时刻2 00519 675
    预测时刻2 00019 684
    后一时刻1 71520 206
    2前一时刻−1 88334 872
    预测时刻−1 88335 105
    后一时刻−2 17335 401
    3前一时刻−2 1115 112
    预测时刻−2 0005 357
    后一时刻−1 8775 632
    4前一时刻−1 97014 918
    预测时刻−2 00014 990
    后一时刻−2 38915 947
    下载: 导出CSV

    表  2   信号灯闭锁结果

    Table  2   Signal light locking results

    序号总次数闭锁成功次数
    未滤波卡尔曼
    滤波
    改进卡尔
    曼滤波
    18 2567 7198 0588 206
    28 5248 0558 3028 456
    38 4427 9868 2568 408
    48 2427 8138 0778 234
    59 5029 0089 2939 454
    68 4247 9948 2138 365
    79 5019 0459 2929 425
    88 5368 0928 3238 485
    98 5838 1208 4038 557
    108 4137 9678 2538 354
    118 2027 7847 9978 136
    129 5319 0649 2649 464
    138 4948 0528 2738 418
    149 5149 0299 3059 447
    158 5438 1338 3298 475
    168 4818 0578 2528 439
    178 2937 8458 0538 235
    188 1937 7597 9808 160
    198 5218 0868 2828 495
    208 4147 9518 2128 397
    218 2317 7878 0428 198
    228 0947 6257 8928 037
    238 2317 7628 0018 165
    248 1417 6937 8978 100
    258 5128 0528 2918 452
    268 8128 3198 5928 786
    278 7128 1988 5298 642
    288 6318 1058 4158 579
    298 5128 0188 2828 452
    308 6528 1768 4448 617
    下载: 导出CSV
  • [1] 张延国,刘振国,赵有国. 中型矿山斜坡道开拓方案比选实践[J]. 采矿技术,2021,21(3):31-33.

    ZHANG Yanguo,LIU Zhenguo,ZHAO Youguo. Comparison and selection practice of medium-sized mine ramp development scheme[J]. Mining Technology,2021,21(3):31-33.

    [2] 蒋万飞,秦绍龙,赵兴东,等. 新城金矿深部斜坡道围岩稳定性分析与控制技术[J]. 金属矿山,2023(10):31-36.

    JIANG Wanfei,QIN Shaolong,ZHAO Xingdong,et al. Stability analysis and control technology of deep ramp surrounding rock in Xincheng Gold Mine[J]. Metal Mine,2023(10):31-36.

    [3] 梁生芳. 浅谈无轨胶轮车辅助运输[J]. 煤炭工程,2003,35(10):9-11.

    LIANG Shengfang. A talk about the undergroud auxiliary haulage system of trackless rubber-tyred mine cars[J]. Coal Engineering,2003,35(10):9-11.

    [4] 田华. 胶轮车运输监控系统在煤矿的应用[J]. 工矿自动化,2012,38(9):119-120.

    TIAN Hua. Application of monitoring and control system for transportation of rubber-tyred locomotive in coal mine[J]. Industry and Mine Automation,2012,38(9):119-120.

    [5] 王进强. 矿山运输与提升[M]. 北京:冶金工业出版社,2015.

    WANG Jinqiang. Mine transportation and hoisting[M]. Beijing:Metallurgical Industry Press,2015.

    [6] 梁占泽,马平,赵俊达,等. 煤矿井下智能无轨辅助运输技术研究[J]. 煤炭工程,2022,54(增刊1):6-11.

    LIANG Zhanze,MA Ping,ZHAO Junda,et al. Research on intelligent trackless auxiliary transportation technology in coal mine[J]. Coal Engineering,2022,54(S1):6-11.

    [7] 曾令义. 乌兰铅锌矿产能提升技改系统优化设计与实践[J]. 矿业研究与开发,2023,43(9):7-11.

    ZENG Lingyi. Optimization design and practice of technical transformation system for capacity expansion in Ullan Lead-Zinc Mine[J]. Mining Research and Development,2023,43(9):7-11.

    [8] 杨韬仁. 我国煤矿辅助运输的现状和无轨胶轮技术的应用[J]. 煤炭科学技术,2006,34(3):21-23. DOI: 10.3969/j.issn.0253-2336.2006.03.008

    YANG Taoren. Present status of coal mine auxiliary transportation and application of rubber tyre transportation technology in China coal mine[J]. Coal Science and Technology,2006,34(3):21-23. DOI: 10.3969/j.issn.0253-2336.2006.03.008

    [9] 吴畏,唐丽均,田国正. 矿用井下智能交通控制系统设计[J]. 煤炭工程,2018,50(7):10-13.

    WU Wei,TANG Lijun,TIAN Guozheng. Design of intelligent traffic control system for coal mine[J]. Coal Engineering,2018,50(7):10-13.

    [10] 丁静波,唐志媛,肖雅静,等. 煤矿井下胶轮车交通调度指挥系统研究与设计[J]. 中国煤炭,2013,39(9):63-65.

    DING Jingbo,TANG Zhiyuan,XIAO Yajing,et al. Design of dispatching and controlling system for underground rubber tire vehicle transportation[J]. China Coal,2013,39(9):63-65.

    [11] 刘一江,周惠蒙,彭楚武,等. 井下交通信号控制及指挥系统的研究与实现[J]. 计算机测量与控制,2008,16(1):58-61.

    LIU Yijiang,ZHOU Huimeng,PENG Chuwu,et al. Study and realization of control and command system for underground traffic signal[J]. Computer Measurement & Control,2008,16(1):58-61.

    [12] 李明. 煤矿井下交通信号控制系统在神东矿区的应用[J]. 电子世界,2016(17):151,153.

    LI Ming. Application of underground traffic signal control system in Shendong mining area[J]. Electronics World,2016(17):151,153.

    [13] 李朝金. 地下矿斜坡道运输自动化管控系统研究[J]. 铁路通信信号工程技术,2021,18(8):39-42. DOI: 10.3969/j.issn.1673-4440.2021.08.009

    LI Chaojin. Automatic management and control system of underground mine ramp transportation[J]. Railway Signalling & Communication Engineering,2021,18(8):39-42. DOI: 10.3969/j.issn.1673-4440.2021.08.009

    [14] 佘九华,陈小林,张明杰. 基于物理检测方式的胶轮车运输监控系统[J]. 工矿自动化,2016,42(5):9-11.

    SHE Jiuhua,CHEN Xiaolin,ZHANG Mingjie. Rubber-tyred vehicle transport monitoring system based on physical detection mode[J]. Industry and Mine Automation,2016,42(5):9-11.

    [15] 杨勇,王方杰,周思维. 基于RFID和ZigBee技术的矿井机车定位系统设计[J]. 煤炭技术,2017,36(1):245-247.

    YANG Yong,WANG Fangjie,ZHOU Siwei. Design of mine locomotive positioning system based on RFID and ZigBee technology[J]. Coal Technology,2017,36(1):245-247.

    [16] 覃中顺,赵四海,胡云兰,等. 煤矿井下应急导航系统设计[J]. 煤炭工程,2020,52(7):49-52.

    QIN Zhongshun,ZHAO Sihai,HU Yunlan,et al. Design of coal mine emergency navigation system[J]. Coal Engineering,2020,52(7):49-52.

    [17] 郭勤勤. 基于UWB技术在井下实时定位系统中的应用[J]. 山东煤炭科技,2021,39(10):209-211.

    GUO Qinqin. Application of UWB technology in underground real-time positioning system[J]. Shandong Coal Science and Technology,2021,39(10):209-211.

    [18] 米彦军. 基于精确定位的井下红绿灯闭锁控制应用[J]. 低碳世界,2024,14(1):73-75. DOI: 10.3969/j.issn.2095-2066.2024.01.025

    MI Yanjun. Application of underground traffic light locking control based on precise positioning[J]. Low Carbon World,2024,14(1):73-75. DOI: 10.3969/j.issn.2095-2066.2024.01.025

    [19] 包翔宇,单成伟,吴岩明. 基于UWB精确定位的辅助运输交通灯自动控制系统[J]. 工矿自动化,2022,48(6):100-111.

    BAO Xiangyu,SHAN Chengwei,WU Yanming. Automatic control system of auxiliary transportation traffic light based on UWB precise positioning[J]. Journal of Mine Automation,2022,48(6):100-111.

    [20] 侯华,李峻辉,代超娜,等. 井下人员超宽带精确定位算法[J]. 电子测量技术,2023,46(4):35-40.

    HOU Hua,LI Junhui,DAI Chaona,et al. Ultra-wideband precise positioning method for downhole personnel[J]. Electronic Measurement Technology,2023,46(4):35-40.

    [21] 李明锋,李䶮,刘用,等. 基于5G+UWB和惯导技术的井下人员定位系统[J]. 工矿自动化,2024,50(1):25-34.

    LI Mingfeng,LI Yan,LIU Yong,et al. Underground personnel positioning system based on 5G+UWB and inertial navigation technology[J]. Journal of Mine Automation,2024,50(1):25-34.

图(19)  /  表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  14
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-24
  • 修回日期:  2024-11-19
  • 网络出版日期:  2024-09-28
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回