矿井水害淹没仿真分析系统

赫瑞, 王文娟, 邢延团, 杨欣

赫瑞,王文娟,邢延团,等. 矿井水害淹没仿真分析系统[J]. 工矿自动化,2025,51(1):163-170. DOI: 10.13272/j.issn.1671-251x.2024080062
引用本文: 赫瑞,王文娟,邢延团,等. 矿井水害淹没仿真分析系统[J]. 工矿自动化,2025,51(1):163-170. DOI: 10.13272/j.issn.1671-251x.2024080062
HE Rui, WANG Wenjuan, XING Yantuan, et al. Simulation analysis system for mine water hazard inundation[J]. Journal of Mine Automation,2025,51(1):163-170. DOI: 10.13272/j.issn.1671-251x.2024080062
Citation: HE Rui, WANG Wenjuan, XING Yantuan, et al. Simulation analysis system for mine water hazard inundation[J]. Journal of Mine Automation,2025,51(1):163-170. DOI: 10.13272/j.issn.1671-251x.2024080062

矿井水害淹没仿真分析系统

基金项目: 国家重点研发计划项目(2024YFC2909202)。
详细信息
    作者简介:

    赫瑞(1985—),男,宁夏银川人,高级工程师,硕士,主要从事自然资源信息化管理工作,E-mail:411416100@qq.com

  • 中图分类号: TD745

Simulation analysis system for mine water hazard inundation

  • 摘要:

    目前针对矿井巷道突发性水体流动模拟及应急疏散路径规划的研究存在巷道拓扑关系手动输入效率低、准确性差,淹没仿真多为定性模拟,缺乏对水流动态扩散过程的精确模拟等问题,提出一种矿井水害淹没仿真分析系统设计方案。生成巷道拓扑关系时采用巷道及节点数据自动创建无向图,进而处理隐式邻接关系,采用PostGIS函数计算弧段相交情况;淹没仿真采用暴雨洪水管理模型(SWMM)的动力波模拟法;应急疏散路径规划采用基于时变网络的Dijkstra算法,考虑巷道水深对通过速度的影响,Dijkstra算法分数据预处理、核心部分、后续处理3个阶段。以内蒙古神隆矿业有限公司为例,通过创建巷道拓扑关系、设定突水量等参数模拟突水事件,应用结果表明:矿井水害淹没仿真分析系统能准确呈现不同时间节点水流蔓延状况;规划的逃生路径能避开水位高、难行区域,通过时间符合实际。

    Abstract:

    Research on the simulation of sudden water flow in mine roadway and emergency evacuation path planning currently faces several challenges, including low efficiency and poor accuracy in manually inputting roadway topology relationships, qualitative inundation simulations, and a lack of precise simulation of the dynamic diffusion process of water flow. This study proposes a design scheme for a mine water hazard inundation simulation analysis system. During the generation of roadway topology relationships, an undirected graph was automatically created using roadway and node data, allowing the handling of implicit adjacency relationships. The intersection of arcs was calculated using PostGIS functions. For inundation simulation, the dynamic wave simulation method of the Storm Water Management Model (SWMM) was applied. Emergency evacuation path planning utilized Dijkstra's algorithm based on time-varying networks, considering the impact of water depth on escape speed. The Dijkstra algorithm was divided into three stages: data preprocessing, core computation, and post-processing. Taking Inner Mongolia Shenlong Mining Co., Ltd. as a case study, roadway topology relationships were created, and parameters such as flood volume were set to simulate sudden water influx events. The results demonstrated that the mine water hazard inundation simulation analysis system accurately reflected the spread of water flow at different time nodes. The planned evacuation paths successfully avoided areas with high water levels and difficult terrain, and the escape times were consistent with actual conditions.

  • 图  1   矿井水害淹没仿真分析系统基础架构

    Figure  1.   Basic architecture of mine water hazard inundation simulation analysis system

    图  2   巷道拓扑关系生成流程

    Figure  2.   Roadway topology relationship generation flow

    图  3   应急疏散路径规划算法流程

    Figure  3.   Emergency evacuation path planning algorithm flow

    图  4   淹没情况

    Figure  4.   Inundation situation

    图  5   关键弧段水深曲线

    Figure  5.   Key arc segment water depth curves

    图  6   应急疏散路径模拟情况

    Figure  6.   Simulation of emergency evacuation path

  • [1] 中国科学院能源战略研究组. 中国能源可持续发展战略专题研究[M]. 北京:科学出版社,2006.

    Energy Strategy Research Group of Chinese Academy of Sciences. Research on special topics of China's energy sustainable development strategy[M]. Beijing:Science Press,2006.

    [2] 符辉,毛善君,骆云秀. 矿井突水蔓延线路生成算法及实现[J]. 煤炭科学技术,2013,41(3):104-106.

    FU Hui,MAO Shanjun,LUO Yunxiu. Algorithm and realization on spreading route formation of mine water inrush[J]. Coal Science and Technology,2013,41(3):104-106.

    [3] 武强,张小燕,赵颖旺,等. 矿井巷道突(透)水蔓延模型研究及应用[J]. 煤炭工程,2018,50(2):1-5. DOI: 10.11799/ce201802001

    WU Qiang,ZHANG Xiaoyan,ZHAO Yingwang,et al. Research and application of water bursting spread model in roadway[J]. Coal Engineering,2018,50(2):1-5. DOI: 10.11799/ce201802001

    [4] 杜沅泽. 矿井水害应急疏散优化方法及系统研究[D]. 北京:中国矿业大学(北京),2021.

    DU Yuanze. Research on mine water disaster emergency evacuation optimization method and system[D]. Beijing:China University of Mining and Technology-Beijing,2021.

    [5] 胡东涛. 基于物联网的非煤地下矿山安全监测预警决策平台研究[D]. 武汉:武汉理工大学,2014.

    HU Dongtao. Study on non-coal underground mine safety monitoring early-warning and decision platform based on IOT[D]. Wuhan:Wuhan University of Technology,2014.

    [6] 贺彪,李霖,郭仁忠,等. 顾及外拓扑的异构建筑三维拓扑重建[J]. 武汉大学学报(信息科学版),2011,36(5):579-583.

    HE Biao,LI Lin,GUO Renzhong,et al. 3D topological reconstruction of heterogeneous buildings considering exterior topology[J]. Geomatics and Information Science of Wuhan University,2011,36(5):579-583.

    [7]

    SCHNEIDER M,BEHR T. Topological relationships between complex spatial objects[J]. ACM Transactions on Database Systems,2006,31(1):39-81. DOI: 10.1145/1132863.1132865

    [8] 吴长彬,闾国年. 空间拓扑关系若干问题研究现状的评析[J]. 地球信息科学学报,2010,12(4):524-531. DOI: 10.3724/SP.J.1047.2010.00524

    WU Changbin,LYU Guonian. Spatial topological relationships:an overview and analysis[J]. Journal of Geo-information Science,2010,12(4):524-531. DOI: 10.3724/SP.J.1047.2010.00524

    [9]

    ZLATANOVA S,RAHMAN A A,SHI Wenzhong. Topological models and frameworks for 3D spatial objects[J]. Computers & Geosciences,2004,30(4):419-428.

    [10] 陈忠强,王李管,刘浪,等. 三维可视化技术在矿井突水进程模拟中的应用[J]. 中国安全科学学报,2013,23(4):38-44.

    CHEN Zhongqiang,WANG Liguan,LIU Lang,et al. Application of 3D visualization technology in simulation of water bursting process in mine sites[J]. China Safety Science Journal,2013,23(4):38-44.

    [11] 李翠平,李仲学,郑瑶瑕,等. 地下矿突水过程的三维动态仿真模型构建[J]. 北京科技大学学报,2013,35(2):140-147.

    LI Cuiping,LI Zhongxue,ZHENG Yaoxia,et al. Three-dimensional dynamic simulation modeling of water inrushes in underground mines[J]. Journal of University of Science and Technology Beijng,2013,35(2):140-147.

    [12] 梅超,刘家宏,王浩,等. SWMM原理解析与应用展望[J]. 水利水电技术,2017,48(5):33-42.

    MEI Chao,LIU Jiahong,WANG Hao,et al. Introduction of basic principle and application prospect for SWMM[J]. Water Resources and Hydropower Engineering,2017,48(5):33-42.

    [13] 徐宗学. 水文模型[M]. 北京:科学出版社,2009.

    XU Zongxue. Hydrological model[M]. Beijing:Science Press,2009.

    [14]

    WANG Qin,YE Yicheng,JIANG Ying. Simulation on mine water-inrush characteristics of cross roadway based on CFX[J]. Procedia Engineering,2011,26:759-764. DOI: 10.1016/j.proeng.2011.11.2234

    [15] 王庆众. 基于三维巷道网络的矿井突水灾害救援路径动态规划方法[D]. 青岛:山东科技大学,2019.

    WANG Qingzhong. Dynamic planning method of mine water inrush disaster rescue route based on three-dimensional roadway network[D]. Qingdao:Shandong University of Science and Technology,2019.

    [16] 卢国菊. 矿井灾变时期最优避灾救灾路径研究[D]. 太原:太原理工大学,2013.

    LU Guoju. The research of the optimal avoiding and rescuing path during mine disaster period[D]. Taiyuan:Taiyuan University of Technology,2013.

    [17] 辛赟. 煤矿井下人员避灾路线规划系统的研究[D]. 西安:西安科技大学,2015.

    XIN Yun. Research on underground mine personnel escape route planning system[D]. Xi'an:Xi'an University of Science and Technology,2015.

    [18] 薛现伟. 巷道内火灾和水害的仿真算法与实现[D]. 青岛:山东科技大学,2009.

    XUE Xianwei. The simulation algorithm and implementation of fire disaster and flood in 3D tunnel[D]. Qingdao:Shandong University of Science and Technology,2009.

    [19] 周越,朱希安,王占刚. 矿井水灾逃生路径建模及路径规划研究[J]. 煤矿安全,2018,49(11):199-203.

    ZHOU Yue,ZHU Xi'an,WANG Zhangang. Research on escape path modeling and planning for mine flood[J]. Safety in Coal Mines,2018,49(11):199-203.

    [20]

    LI Xiang,LI Qiuping,CLARAMMUNT C. A time-extended network model for staged evacuation planning[J]. Safety Science,2018,108:225-236. DOI: 10.1016/j.ssci.2017.08.004

    [21]

    LIN P,LO S M,HUANG H C,et al. On the use of multi-stage time-varying quickest time approach for optimization of evacuation planning[J]. Fire Safety Journal,2008,43(4):282-290. DOI: 10.1016/j.firesaf.2007.08.005

图(6)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  9
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 修回日期:  2025-01-19
  • 网络出版日期:  2025-02-08
  • 刊出日期:  2025-01-24

目录

    /

    返回文章
    返回