基于GSL−YOLO模型的综放工作面混矸率检测方法

王福奇, 王志峰, 金建成, 井庆贺, 王耀辉, 王大龙, 汪义龙

王福奇,王志峰,金建成,等. 基于GSL−YOLO模型的综放工作面混矸率检测方法[J]. 工矿自动化,2024,50(9):59-65, 137. DOI: 10.13272/j.issn.1671-251x.2024080011
引用本文: 王福奇,王志峰,金建成,等. 基于GSL−YOLO模型的综放工作面混矸率检测方法[J]. 工矿自动化,2024,50(9):59-65, 137. DOI: 10.13272/j.issn.1671-251x.2024080011
WANG Fuqi, WANG Zhifeng, JIN Jiancheng, et al. Detection method for gangue mixed ratio in fully mechanized caving faces based on the GSL-YOLO model[J]. Journal of Mine Automation,2024,50(9):59-65, 137. DOI: 10.13272/j.issn.1671-251x.2024080011
Citation: WANG Fuqi, WANG Zhifeng, JIN Jiancheng, et al. Detection method for gangue mixed ratio in fully mechanized caving faces based on the GSL-YOLO model[J]. Journal of Mine Automation,2024,50(9):59-65, 137. DOI: 10.13272/j.issn.1671-251x.2024080011

基于GSL−YOLO模型的综放工作面混矸率检测方法

基金项目: 国家自然科学基金面上项目(52274207);天地科技开采设计事业部科技创新基金项目(KJ-2021-KCMS-02)。
详细信息
    作者简介:

    王福奇(1978—),男,甘肃华亭人,高级工程师,研究方向为煤炭开采,E-mail:11185351260@qq.com

  • 中图分类号: TD823.49

Detection method for gangue mixed ratio in fully mechanized caving faces based on the GSL-YOLO model

  • 摘要: 针对现有基于深度学习的综放工作面混矸率检测方法在井下低照度、高粉尘、煤矸堆叠等复杂条件下存在煤矸识别精度低、分割效果差、模型参数量和运算量大、未实现混矸率的实时检测等问题,提出了一种基于GSL−YOLO模型的混矸率检测方法。GSL−YOLO模型在YOLOv8−seg的基础上进行以下改进:在主干网络中引入全局注意力机制(GAM),通过减少信息弥散和放大全局交互表示提高模型特征提取能力;选用具有高效局部聚合网络的空间金字塔池化(SPPELAN)模块,提升模型处理不同尺寸目标时的检测性能;采用轻量级非对称多级压缩检测头(LADH),降低模型的训练难度,同时提高推理速度。提出了一种基于类别分割掩码的混矸率计算方法,该方法基于煤流图像处理结果中的分割掩码信息,计算其中矸石的像素面积与总像素面积的比值,作为瞬时混矸率。实验结果表明:① GSL−YOLO模型的mAP@0.5∶0.95达96.1%,比YOLOv8−seg模型提高了0.8%。② GSL−YOLO模型的参数量为2.9×106个,浮点运算次数为11.4×109,模型权重为6.0 MiB,比YOLOv8−seg模型分别降低了12.1%,5.8%,11.8%,实现了模型的轻量化。③ GSL−YOLO模型在测试集上的帧率为12帧/s,基本满足实时检测要求。④ 与YOLO系列模型相比,GSL−YOLO模型分割效果最好,检测精度最高,参数量和运算量较少,综合性能最佳。⑤ 基于截取的综放工作面后部刮板输送机上煤流视频中的3帧图像,计算了瞬时混矸率,结果表明,提出的混矸率计算方法基本实现了综放工作面混矸率的实时计算。
    Abstract: Aiming to address the issues with current gangue mixed ratio detection methods in fully mechanized caving face based on deep learning, such as low accuracy of coal gangue identification, poor segmentation performance, large model parameters and computation load, and the inability to achieve real-time detection of gangue mixed ratio under complex conditions such as low lighting, high dust, and coal and angue stacking, the paper proposed a gangue mixed ratio detection method based on the GSL-YOLO model. The GSL-YOLO model introduced the following improvements to the YOLOv8-seg model: the incorporation of a global attention mechanism (GAM) in the backbone network to enhance feature extraction by reducing information dispersion and amplifying global interaction representation; the use of a spatial pyramid pooling with efficient local aggregation network (SPPELAN) module to improve detection performance for targets of varying sizes; and the adoption of a lightweight asymmetric dual-head (LADH) to reduce training difficulty while increasing inference speed. Additionally, a gangue mixed ratio calculation method based on category segmentation masks was proposed, which calculated the ratio of the pixel area of gangue to the total pixel area in the segmentation mask of coal flow images, serving as the instantaneous gangue mixed ratio. Experimental results showed that: ① The GSL-YOLO model achieved an mAP@0.5∶0.95 of 96.1%, which was 0.8% higher than the YOLOv8-seg model. ② The GSL-YOLO model had 2.9×106 parameters, 11.4×109 floating-point operations, and a model weight of 6.0 MiB, representing reductions of 12.1%, 5.8%, and 11.8% respectively compared to the YOLOv8-seg model, achieving model lightweighting. ③ The GSL-YOLO model achieved a frame rate of 12 frames per second on the test set, essentially meeting the requirements for real-time detection. ④ Compared with the YOLO series models, the GSL-YOLO model had the best segmentation effect, the highest detection accuracy, fewer parameters and computation load, and the best overall performance. ⑤ Based on three frames of images captured from the coal flow on the rear scraper conveyor of the fully mechanized caving face, the instantaneous gangue mixed ratio was calculated, and the results showed that the proposed method successfully realized real-time calculation of the gangue mixed ratio in fully mechanized caving face.
  • 图  1   GSL−YOLO模型结构

    Figure  1.   GSL-YOLO model structure

    图  2   GAM结构

    Figure  2.   Global attention mechanism(GAM) structure

    图  3   通道注意力子模块

    Figure  3.   Channel attention sub-module

    图  4   空间注意力子模块

    Figure  4.   Spatial attention sub-module

    图  5   SPPELAN模块

    Figure  5.   Spatial pyramid pooling with efficient local aggregation network (SPPELAN) module

    图  6   LADH结构

    Figure  6.   Lightweight asymmetric dual-head (LADH) structure

    图  7   模型改进前后热力图对比

    Figure  7.   Comparison of heat maps before and after model improvement

    图  8   煤矸图像增强效果

    Figure  8.   Images enhancement effect of coal and gangue

    图  9   模型分割效果对比

    Figure  9.   Comparison of model segmentation effects

    表  1   消融实验结果

    Table  1   Ablation experimental results

    YOLOv8−
    seg
    GAM SPPELAN LADH mAP@
    0.5∶0.95/%
    参数
    量/
    106
    浮点
    运算次
    数/109
    模型
    权重/
    MiB
    × × × 95.3 3.3 12.1 6.8
    × × 95.7 3.7 12.5 7.7
    × × 95.5 2.7 11.6 5.7
    × × 96.1 3.3 11.7 6.9
    × 95.8 2.8 11.7 5.9
    × 96.3 3.7 12.1 7.8
    × 95.6 2.8 11.3 5.8
    96.1 2.9 11.4 6.0
    下载: 导出CSV

    表  2   对比实验结果

    Table  2   Comparative experimental results

    模型 mAP@
    0.5∶0.95/%
    参数
    量/106
    浮点运算
    次数/109
    模型
    权重/MiB
    YOLOv8−seg 95.3 3.3 12.1 6.8
    YOLOv3−tiny−seg 87.1 14.1 32.8 28.3
    YOLOv5−seg 95.0 2.8 11.1 5.8
    YOLOv6−seg 95.1 4.4 15.3 9.0
    GSL−YOLO 96.1 2.9 11.4 6.0
    下载: 导出CSV

    表  3   混矸率计算结果

    Table  3   Calculation results of gangue mixed ratio

    图像 原图 分割结果 混矸
    率/%
    帧率/
    (帧·s−1
    图像1 7 5.0
    图像2 25 4.9
    图像3 45 4.8
    下载: 导出CSV
  • [1] 王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.

    [2] 王国法,孟令宇. 煤矿智能化及其技术装备发展[J]. 中国煤炭,2023,49(7):1-13.

    WANG Guofa,MENG Lingyu. Development of coal mine intelligence and its technical equipment[J]. China Coal,2023,49(7):1-13.

    [3] 王国法,庞义辉,许永祥,等. 厚煤层智能绿色高效开采技术与装备研发进展[J]. 采矿与安全工程学报,2023,40(5):882-893.

    WANG Guofa,PANG Yihui,XU Yongxiang,et al. Development of intelligent green and efficient mining technology and equipment for thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(5):882-893.

    [4] 王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报,2018,43(1):43-51.

    WANG Jiachen. Engineering practice and theoretical progress of top-coal caving mining technology in China[J]. Journal of China Coal Society,2018,43(1):43-51.

    [5] 王家臣. 我国综放开采40年及展望[J]. 煤炭学报,2023,48(1):83-99.

    WANG Jiachen. 40 years development and prospect of longwall top coal caving in China[J]. Journal of China Coal Society,2023,48(1):83-99.

    [6] 王家臣,张锦旺. 综放开采顶煤放出规律的BBR研究[J]. 煤炭学报,2015,40(3):487-493.

    WANG Jiachen,ZHANG Jinwang. BBR study of top-coal drawing law in longwall top-coal caving mining[J]. Journal of China Coal Society,2015,40(3):487-493.

    [7] 李良晖. 放顶煤工作面煤矸混合度自动识别研究进展[J]. 煤炭工程,2017,49(10):30-34.

    LI Lianghui. Research progress of automatic recognition of coal-gangue mixedness in longwall top-coal caving face[J]. Coal Engineering,2017,49(10):30-34.

    [8] 李嘉豪,司垒,王忠宾,等. 综放工作面煤矸识别技术及其应用[J]. 仪器仪表学报,2024,45(1):1-15.

    LI Jiahao,SI Lei,WANG Zhongbin,et al. Coal gangue identification technology and its application in fully-mechanized coal mining face[J]. Chinese Journal of Scientific Instrument,2024,45(1):1-15.

    [9] 李德永,王国法,郭永存,等. 基于CFS−YOLO算法的复杂工况环境下煤矸图像识别方法[J]. 煤炭科学技术,2024,52(6):226-237.

    LI Deyong,WANG Guofa,GUO Yongcun,et al. Image recognition method of coal gangue in complex working conditions based on CFS-YOLO algorithm[J]. Coal Science and Technology,2024,52(6):226-237.

    [10] 何凯,程刚,王希,等. 基于CED−YOLOv5s模型的煤矸识别方法研究[J]. 工矿自动化,2024,50(2):49-56,82.

    HE Kai,CHENG Gang,WANG Xi,et al. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation,2024,50(2):49-56,82.

    [11] 滕文想,王成,费树辉. 基于HGTC−YOLOv8n模型的煤矸识别算法研究[J]. 工矿自动化,2024,50(5):52-59.

    TENG Wenxiang,WANG Cheng,FEI Shuhui. Research on coal gangue recognition algorithm based on HGTC-YOLOv8n model[J]. Journal of Mine Automation,2024,50(5):52-59.

    [12] 杨洋,李海雄,胡淼龙,等. 基于YOLOv5−SEDC模型的煤矸分割识别方法[J]. 工矿自动化,2024,50(8):120-126.

    YANG Yang,LI Haixiong,HU Miaolong,et al. Coal and gangue segmentation and recognition method based on YOLOv5-SEDC model[J]. Journal of Mine Automation,2024,50(8):120-126.

    [13] 王家臣,潘卫东,张国英,等. 图像识别智能放煤技术原理与应用[J]. 煤炭学报,2022,47(1):87-101.

    WANG Jiachen,PAN Weidong,ZHANG Guoying,et al. Principles and applications of image-based recognition of withdrawn coal and intelligent control of draw opening in longwall top coal caving face[J]. Journal of China Coal Society,2022,47(1):87-101.

    [14] 王家臣,李良晖,杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报,2018,43(11):3051-3061.

    WANG Jiachen,LI Lianghui,YANG Shengli. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance[J]. Journal of China Coal Society,2018,43(11):3051-3061.

    [15] 贺海涛,王佳豪,张海峰,等. 基于U−Net的放煤状态控制关键技术研究[J]. 煤炭科学技术,2022,50(增刊2):237-243.

    HE Haitao,WANG Jiahao,ZHANG Haifeng,et al. Calculation method of gangue content of coal gangue mixed image in fully-mechanized caving based on U-Net[J]. Coal Science and Technology,2022,50(S2):237-243.

    [16] 单鹏飞,孙浩强,来兴平,等. 基于改进Faster R−CNN的综放煤矸混合放出状态识别方法[J]. 煤炭学报,2022,47(3):1382-1394.

    SHAN Pengfei,SUN Haoqiang,LAI Xingping,et al. Identification method on mixed and release state of coal-gangue masses of fully mechanized caving based on improved Faster R-CNN[J]. Journal of China Coal Society,2022,47(3):1382-1394.

    [17]

    REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.

    [18] 油亚鹏,马波,赵乐,等. 基于CA−YOLOv8的输送带大块煤检测方法 [J/OL]. 计算机辅助设计与图形学学报:1-12[2024-07-06]. http://kns.cnki.net/kcms/detail/11.2925.TP.20240204.1655.057.html.

    YOU Yapeng,MA Bo,ZHAO Le,et al. Large coal detection method for conveyor belt based on CA-YOLOv8[J/OL] Journal of Computer- Aided Design and Graphics:1-12[2024-07-06]. http://kns.cnki.net/kcms/detail/11.2925.TP.20240204.1655.057.html.

    [19]

    LIU Yichao,SHAO Zongru,HOFFMANN N. Global attention mechanism:retain information to enhance channel-spaial interactions[EB/OL]. [2024-06-20]. http:// arxiv.org/pdf/2112.05561.

    [20]

    WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:7464-7475.

    [21] 杨志渊,罗亮,吴天阳,等. 改进YOLOv8的轻量级光学遥感图像船舶目标检测算法[J]. 计算机工程与应用,2024,60(16):248-257.

    YANG Zhiyuan,LUO Liang,WU Tianyang,et al. Improved lightweight ship target detection algorithm for optical remote sensing images with YOLOv8[J]. Computer Engineering and Applications,2024,60(16):248-257.

  • 期刊类型引用(35)

    1. 张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计. 煤炭工程. 2024(01): 220-224 . 百度学术
    2. 刘锋,白金牛. 基于视觉技术的胶带输送机煤量检测方法. 陕西煤炭. 2024(01): 52-57+64 . 百度学术
    3. 刘文梅. 基于煤流量监控的带式输送机监测方案设计. 机械管理开发. 2024(02): 243-244+247 . 百度学术
    4. 岑梁,尹小明,黄海棠,胡文博,张世荣. 带式输送系统节能优化调度研究. 制造业自动化. 2024(05): 114-119 . 百度学术
    5. 尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 . 本站查看
    6. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 . 百度学术
    7. 王涛. 基于改进MobileNet的带式输送机煤量检测研究. 能源与环保. 2024(07): 198-202 . 百度学术
    8. 尹瑞,张冬雪,倪强. 基于数组的刮板输送机运载模型及煤量计算算法研究. 工矿自动化. 2024(08): 84-90 . 本站查看
    9. 段树深. 基于ROI边缘图像直线特征的井下带式输送机跑偏故障检测方法. 中国矿业. 2024(10): 162-167 . 百度学术
    10. 刘西尧,纪妙,陈恩博,余宝意,曾庆杰,李海生. 基于机器视觉的烟草输送机皮带跑偏识别方法研究. 设备管理与维修. 2024(19): 165-169 . 百度学术
    11. 左明明,张习,杨子豪,孙其飞,张梦超,张媛,李虎. 基于深度学习的输送带跑偏状态智能监测方法. 工矿自动化. 2024(12): 166-172+182 . 本站查看
    12. 尚伟栋. 矿用带式输送机过载传感检测中的模糊阈值判断. 煤矿机械. 2023(04): 197-200 . 百度学术
    13. 秦亚敏,张雷,赵东哲,张金辉,贾英新,靳晔. 基于机器视觉的带式输送机跑偏监测预警方法. 煤矿机械. 2023(05): 165-167 . 百度学术
    14. 曾飞,胡文祥,高彦鑫,宋杰杰. 基于激光扫描的输送带横向跑偏检测系统. 制造业自动化. 2023(05): 21-24 . 百度学术
    15. 吕晨辉,李新,刘新龙,赵安新,张晨阳. 基于煤量检测与变频一体机的煤流自适应智能调速. 煤矿机械. 2023(08): 213-216 . 百度学术
    16. 李阿红. 基于图像处理的矿用带式输送机系统设计及其能效分析. 能源与环保. 2023(07): 228-232+238 . 百度学术
    17. 曾飞,陶玉衡,苏俊彬,李翔. 融合ResNet18和Deconvolution的输送带横向跑偏检测方法. 现代制造工程. 2023(08): 121-126 . 百度学术
    18. 毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 . 本站查看
    19. 高京,董华丛. 基于目标检测的铁路货车承载鞍错位故障识别. 自动化技术与应用. 2023(10): 63-67 . 百度学术
    20. 周坪,马国庆,周公博,马天兵,李远博. 智能化带式输送机健康监测技术研究综述. 仪器仪表学报. 2023(12): 1-21 . 百度学术
    21. 杨志方,张立亚,郝博南,刘渊,赵青. 基于双流融合网络的输送带跑偏检测方法. 煤炭科学技术. 2023(S2): 259-267 . 百度学术
    22. 王桂梅,李学晖,杨立洁,刘杰辉. 基于深度学习的永磁直驱带式输送机煤量检测方法研究. 煤炭技术. 2022(01): 188-190 . 百度学术
    23. 邢建旭,岑梁,卢峰,黄益军,胡文博,邱泽晶,张世荣. 基于带式输送机的仓储转运系统优化调度研究. 机电工程. 2022(03): 402-410 . 百度学术
    24. 屠鑫. 基于图像识别的中长跑运动员摆臂高度校准方法研究. 河北北方学院学报(自然科学版). 2022(07): 7-12+18 . 百度学术
    25. 白光星,陈炜乐,孙勇,宋双林,李国芳,王彩萍,王伟峰,康付如. 煤矿带式输送机运输火灾风险智能监测与早期预警技术研究进展. 煤矿安全. 2022(09): 47-54 . 百度学术
    26. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 . 百度学术
    27. 刘孝军,王飞. 基于AI的煤矿视频智能分析技术. 煤炭科学技术. 2022(S2): 260-264 . 百度学术
    28. 姜阔胜,李良和,王开松,胡坤. 煤矿输送带修复点定位及监测系统设计. 煤矿机械. 2021(02): 1-4 . 百度学术
    29. 王平. 基于数字图像处理的输送带跑偏状态实时监测技术. 煤矿机械. 2021(02): 168-170 . 百度学术
    30. 云艳. 矿用带式输送机跑偏机理及纠偏系统设计. 能源与环保. 2021(12): 264-268 . 百度学术
    31. 李林. 矿用皮带输送机纠偏装置的分析研究. 机械管理开发. 2020(08): 74-75+78 . 百度学术
    32. 高云飞. 带式输送机托辊结构受力分析. 中国石油和化工标准与质量. 2020(15): 157-158 . 百度学术
    33. 张凯,田原,贾曲. 机器视觉在煤机装备中的应用现状与趋势. 煤矿机械. 2020(12): 123-125 . 百度学术
    34. 陈小霞,徐伟同,侯飞,高奎,刘兆雪,温玺杰,王兵,王延勇,王晓倩. 基于图像处理的煤炭量AI识别系统的设计. 选煤技术. 2020(06): 75-80 . 百度学术
    35. 成新文. 带式输送机防跑偏技术分析研究. 内蒙古煤炭经济. 2020(15): 47-48 . 百度学术

    其他类型引用(14)

图(9)  /  表(3)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  25
  • PDF下载量:  30
  • 被引次数: 49
出版历程
  • 收稿日期:  2024-08-04
  • 修回日期:  2024-09-21
  • 网络出版日期:  2024-09-28
  • 刊出日期:  2024-08-31

目录

    /

    返回文章
    返回