融合传感器数据和人工调控信息的工作面直线度智能预测

孙岩, 付翔, 王然风, 贾一帆, 张智星

孙岩,付翔,王然风,等. 融合传感器数据和人工调控信息的工作面直线度智能预测[J]. 工矿自动化,2024,50(11):84-91. DOI: 10.13272/j.issn.1671-251x.2024070106
引用本文: 孙岩,付翔,王然风,等. 融合传感器数据和人工调控信息的工作面直线度智能预测[J]. 工矿自动化,2024,50(11):84-91. DOI: 10.13272/j.issn.1671-251x.2024070106
SUN Yan, FU Xiang, WANG Ranfeng, et al. Intelligent prediction for face straightness based on sensor data and human operation information[J]. Journal of Mine Automation,2024,50(11):84-91. DOI: 10.13272/j.issn.1671-251x.2024070106
Citation: SUN Yan, FU Xiang, WANG Ranfeng, et al. Intelligent prediction for face straightness based on sensor data and human operation information[J]. Journal of Mine Automation,2024,50(11):84-91. DOI: 10.13272/j.issn.1671-251x.2024070106

融合传感器数据和人工调控信息的工作面直线度智能预测

基金项目: 国家自然科学基金项目(52274157);“科技兴蒙”行动重点专项项目(2022EEDSKJXM010)。
详细信息
    作者简介:

    孙岩(2000—),男,山西运城人,硕士研究生,研究方向为煤矿自动化与控制工程,E-mail:481222398@qq.com

    通讯作者:

    王然风(1970—),男,山西长治人,副教授,博士,主要研究方向为矿物加工过程仿真、煤矿自动化与控制工程,E-mail:wrf197010@126.com

  • 中图分类号: TD355

Intelligent prediction for face straightness based on sensor data and human operation information

  • 摘要:

    目前综采工作面直线度调控采用基于工作面推移行程等传感器数据和人工观测调控相结合的方式,但存在传感器数据和人工调控信息得不到有效利用的问题。针对上述问题,提出了融合传感器数据和人工调控信息的工作面直线度智能预测方法。对支架推移油缸行程、支架立柱压力、采煤机位置等进行数据清洗,并按照正常推溜调控距离和调整推溜调控距离进行分类,构建由工作面正常推溜调控距离矩阵和累计推溜调控距离矩阵组成的工作面直线度分析矩阵;通过特征工程对工作面直线度分析矩阵进行特征提取,生成特征矩阵作为样本,将人工调控距离对应的工况类型作为样本标签;采用机器学习分类算法建立工作面直线度预测模型。实验结果表明,采用随机森林算法搭建的工作面直线度预测模型准确率最高,为91.41%。将该模型应用于高河煤矿2312工作面,结果表明,在运行30 d、115次割煤循环的工作面直线度预测过程中,该模型预测准确率达81.4%。

    Abstract:

    Currently, the control of face straightness in fully mechanized mining faces combines sensor data such as advancing stroke with manual observations. However, an issue has been identified where sensor data and human operation information are not effectively utilized. To address this problem, an intelligent prediction method for face straightness that integrates sensor data and human operation information was proposed. The support advancing cylinder stroke data, support column pressure data and shearer position data were cleaned, and classified according to the normal advancing stroke control distance and the adjusted advancing stroke control distance. A face straightness analysis matrix was constructed, consisting of the normal advancing stroke control distance matrix and the accumulated advancing stroke control distance matrix. Through feature engineering, feature extraction was carried out on the straightness analysis matrix of the working face, and the feature matrix was generated as a sample, with the working condition type corresponding to the manual control distance to serve as sample labels. The experimental results show that the accuracy of the working face straightness prediction model built by random forest algorithm is the highest, which was 91.41%. A machine learning classification algorithm was employed to establish a prediction model for the face straightness of the current mining cycle. This prediction model was applied to the 2312 working faces at the Gaohe coal mine. The results indicated that during the 30-day period and 115 cutting cycles of the face straightness prediction, achieving an accuracy rate of 81.4%.

  • 图  1   融合传感器数据和人工调控信息的工作面直线度智能预测流程

    Figure  1.   Process of intelligent prediction for face straightness based on sensor data and human operation information

    图  2   液压支架多传感器数据变化曲线

    Figure  2.   Hydraulic support multi-sensor data variation curves

    图  3   刮板输送机推进距离

    Figure  3.   Scraper conveyor advancing stroke distance

    图  4   不同预测模型混淆矩阵对比

    Figure  4.   Comparison of confusion matrices for different prediction models

    图  5   融合传感器数据和人工调控信息的工作面直线度智能预测部署架构

    Figure  5.   Deployment architecture of intelligent prediction for face straightness based on sensor data and human operation information

    图  6   工作面直线度预测结果与现场结果对比

    Figure  6.   Comparison between face straightness prediction results and actual measurement results

    表  1   直线度调整操作支架数

    Table  1   Number of supports for straightness adjustment operating

    操作支架数/台 1 2 3 4 >5
    操作次数 10 191 101 47 103
    下载: 导出CSV

    表  2   样本统计结果

    Table  2   Statistics result of samples

    样本标签样本数/个
    直线度良好(C≤10 mm)928
    调控100 mm(10 mm<C<150 mm)506
    调控200 mm(150 mm≤C<300 mm)124
    调控300 mm(C≥300 mm)68
    下载: 导出CSV

    表  3   模型准确率

    Table  3   Model accuracy rate

    算法 LR KNN SVM NB DT RF
    准确率/% 57.97 89.26 85.89 73.00 80.67 91.41
    下载: 导出CSV
  • [1] 王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1-8.

    WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and implementation path of "dual carbon" target[J]. Coal Science and Technology,2021,49(9):1-8.

    [2] 王国法,任怀伟,赵国瑞,等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报,2022,47(1):61-74.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Digital model and giant system coupling technology system of smart coal mine[J]. Journal of China Coal Society,2022,47(1):61-74.

    [3] 袁智,蒋庆友,庞振忠. 我国煤矿智能化综采开采技术装备应用现状与发展思考[J]. 煤炭科学技术,2024,52(9):189-198. DOI: 10.12438/cst.2024-1054

    YUAN Zhi,JIANG Qingyou,PANG Zhenzhong. Application status and development thinking of intelligent mining technology and equipment in coal mines in China[J]. Coal Science and Technology,2024,52(9):189-198. DOI: 10.12438/cst.2024-1054

    [4] 王国法,庞义辉,任怀伟. 智慧矿山技术体系研究与发展路径[J]. 金属矿山,2022(5):1-9.

    WANG Guofa,PANG Yihui,REN Huaiwei. Research and development path of smart mine technology system[J]. Metal Mine,2022(5):1-9.

    [5] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.

    [6] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.

    [7] 卢春贵,许春雨,宋建成,等. 基于RSSI的液压支架调直方法研究[J]. 煤矿机械,2021,42(6):193-195.

    LU Chungui,XU Chunyu,SONG Jiancheng,et al. Research on straightening method of hydraulic support based on RSSI[J]. Coal Mine Machinery,2021,42(6):193-195.

    [8] 张树楠,曹现刚,崔亚仲,等. 基于多传感器的液压支架直线度测量方法研究[J]. 煤矿机械,2020,41(4):56-59.

    ZHANG Shunan,CAO Xiangang,CUI Yazhong,et al. Research on straightness measurement method of hydraulic support based on multi-sensor[J]. Coal Mine Machinery,2020,41(4):56-59.

    [9] 杨学军,王然风,王怀法,等. 基于运动过程还原法的液压支架巡检机器人位姿检测[J]. 太原理工大学学报,2020,51(2):162-170.

    YANG Xuejun,WANG Ranfeng,WANG Huaifa,et al. Pose measurement of detection robot in hydraulic supports based on the motion process restoration method[J]. Journal of Taiyuan University of Technology,2020,51(2):162-170.

    [10] 牛剑峰. 基于视频巡检的综采工作面无人化关键技术研究[J]. 煤炭科学技术,2019,47(10):141-146.

    NIU Jianfeng. Research on unmanned key technology of fully-mechanized mining face based on video inspection[J]. Coal Science and Technology,2019,47(10):141-146.

    [11] 李森. 基于惯性导航的工作面直线度测控与定位技术[J]. 煤炭科学技术,2019,47(8):169-174.

    LI Sen. Measurement & control and localisation for fully-mechanized working face alignment based on inertial navigation[J]. Coal Science and Technology,2019,47(8):169-174.

    [12] 夏婷. 综采工作面刮板输送机直线度检测方法研究[D]. 徐州:中国矿业大学,2019.

    XIA Ting. Study on the measurement method of scraper conveyor straightness in fully mechanized mining face[D]. Xuzhou:China University of Mining and Technology,2019.

    [13] 陈宇鸣. 基于SINS/UWB的刮板输送机高可靠性直线度检测技术研究[D]. 徐州:中国矿业大学,2021.

    CHEN Yuming. Research on high reliability straightness measurement technology of scraper conveyor based on SINS/UWB[D]. Xuzhou:China University of Mining and Technology,2021.

    [14] 杨波,吴宁. 基于组合惯导的综采工作面刮板输送机直线度检测方法[J]. 煤矿安全,2022,53(6):148-152.

    YANG Bo,WU Ning. Combined inertial guidance based Straightness detection method of scraper conveyor in fully mechanized mining face based on integrated inertial navigation[J]. Safety in Coal Mines,2022,53(6):148-152.

    [15] 杨曌. 基于视觉测量的综采工作面直线度测量技术研究[J]. 煤炭工程,2016,48(9):134-136.

    YANG Zhao. Research on measurement technology of working face straightness based on vision measurement[J]. Coal Engineering,2016,48(9):134-136.

    [16] 刘鹏坤. 基于视觉测量的综采工作面直线度控制研究[D]. 北京:中国矿业大学(北京),2020.

    LIU Pengkun. Research on straightness control of fully mechanized coal face based on vision measurement[D]. Beijing:China University of Mining and Technology-Beijing,2020.

    [17] 方新秋,陈宁宁,冯豪天,等. 刮板输送机直线度光纤精准感知与调直关键技术[J]. 采矿与安全工程学报,2023,40(5):1043-1056.

    FANG Xinqiu,CHEN Ningning,FENG Haotian,et al. Key technologies of optical fiber accurate perception and straightening of straightness of the scraper conveyor[J]. Journal of Mining & Safety Engineering,2023,40(5):1043-1056.

    [18] 宁耀圣. 智能工作面刮板输送机直线度感知机理研究[D]. 徐州:中国矿业大学,2019.

    NING Yaosheng. Study on straightness perception mechanism of scraper conveyor in intelligent working face[D]. Xuzhou:China University of Mining and Technology,2019.

    [19] 王学文,李素华,谢嘉成,等. 机器人运动学与时序预测融合驱动的刮板输送机调直方法[J]. 煤炭学报,2021,46(2):652-666.

    WANG Xuewen,LI Suhua,XIE Jiacheng,et al. Straightening method of scraper conveyor driven by robot kinematics and time series prediction[J]. Journal of China Coal Society,2021,46(2):652-666.

    [20] 葛世荣. 刮板输送机技术发展历程(三)——驱动与智能控制技术[J]. 中国煤炭,2024,50(4):1-12.

    GE Shirong. The development history of scraper conveyor technology (part three):intelligent drive and control technology[J]. China Coal,2024,50(4):1-12.

    [21] 王雪松,王世博,王世佳,等. 刮板输送机直线度误差预测模型[J]. 中国矿业大学学报,2023,52(1):168-177.

    WANG Xuesong,WANG Shibo,WANG Shijia,et al. Prediction model of straightness error of scraper conveyor[J]. Journal of China University of Mining & Technology,2023,52(1):168-177.

    [22] 王峰. 液压支架精确推移控制方案研究与应用[J]. 工矿自动化,2017,43(5):6-9.

    WANG Feng. Research of precise pushing control scheme for hydraulic support and its application[J]. Industry and Mine Automation,2017,43(5):6-9.

  • 期刊类型引用(2)

    1. 刘媛媛. 煤矿机电设备智能化维护研究现状与发展趋势. 工矿自动化. 2021(07): 79-84 . 本站查看
    2. 胡韶华,谷振宇,金迪文. 一种轴流通风机故障诊断方法. 工矿自动化. 2018(05): 58-63 . 本站查看

    其他类型引用(3)

图(6)  /  表(3)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  12
  • PDF下载量:  22
  • 被引次数: 5
出版历程
  • 收稿日期:  2024-07-29
  • 修回日期:  2024-11-19
  • 网络出版日期:  2024-10-28
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回