Study on the stress distribution of surrounding rock and the inclination effect of gangue filling features in steeply dipping mining sites
-
摘要: 煤层倾角是造成大倾角采场采动力学行为呈现复杂性、特殊性,诱发众多灾害事故的重要因素之一,为揭示煤层倾角对大倾角采场围岩控制及矿压显现特征的影响规律,采用物理相似模拟和数值计算相结合的研究方法,在综合分析了大倾角工作面顶板破断运移及矸石滑滚充填特征的基础上,利用有限元−离散元(FLAC2D-PFC2D)耦合算法建立了不同倾角的大倾角采场耦合数值模型,研究了大倾角采场围岩应力分布及矸石充填特征的倾角效应。结果表明:① 采动作用下,大倾角采场顶底板内围岩应力均呈非对称拱形分布,随着煤层倾角增大,拱形垂直应力释放区范围和向上部偏移程度逐渐增大,但水平应力释放区范围和应力值逐渐减小,无论是垂直应力还是水平应力都易在工作面上下端头顶板处出现应力集中,但最大集中应力会随煤层倾角的增大而减小;大倾角工作面顶底板内应力大小和传递方向均存在非对称特征,随着煤层倾角增大,工作面顶底板应力拱高逐渐降低,围岩应力的传递方向以围岩涌向采出空间为主,由初始近似竖直方向逐渐偏转趋于工作面垂向。② 工作面顶板破断及矸石的滑滚充填具有时序性和分区演化特性,并随煤层倾角的改变而呈现一定的倾角效应。随着煤层倾角增大,直接顶的初次破断位置将逐渐向工作面倾向上部区域转移,同时由于重力沿工作面倾向的分力变大,矸石沿倾向的充填程度更为密实,但充填长度减小,工作面中上部区域高位岩层的破碎程度和空洞范围增大。③ 采空区内矸石对围岩的作用机制主要体现在提供侧向应力和竖向支撑2个方面,且受矸石重力作用影响较大,会随煤层倾角改变呈现较强的倾角效应。Abstract: The dip angle of coal seam is one of the important factors that cause the complexity and particularity of the mining dynamic behavior of the large dip angle stope and induce many disasters and accidents. In order to reveal the influence law of the dip angle of coal seam on the control of surrounding rock and the characteristics of mine pressure in the large dip angle stope, the research method of physical similarity simulation and numerical calculation is adopted. Based on a comprehensive analysis of the features of roof crack and gangue sliding and rolling filling in steeply dipping working faces, a finite element discrete element (FLAC2D-PFC2D) coupling algorithm is used to establish a coupled numerical model of high angle mining areas with different inclinations. The stress distribution of surrounding rock and the inclination effect of gangue filling features in steeply dipping mining areas are studied. The results show the following points. ① Under the action of mining, the stress distribution of the surrounding rock in the roof and floor of the high angle mining area is asymmetric arched. As the dip angle of the coal seam increases, the range of the arched vertical stress release zone and the degree of upward displacement gradually increase. But the range and force value of the horizontal stress release zone gradually decrease. Both vertical and horizontal stresses are prone to stress concentration at the top and bottom of the working face. But the maximum concentrated stress value will decrease with the increase of coal seam inclination angle. The stress magnitude and transmission direction inside the roof and floor of the steeply dipping working face exhibit asymmetric features. As the coal seam dip angle increases, the stress arch height of the working face roof and floor gradually decreases. The transmission direction of surrounding rock stress is mainly towards the mining space, and gradually deviates from the initial approximate vertical direction towards the vertical direction of the working face. ② The roof crack of the working face and the sliding and filling of gangue exhibit temporal and regional evolution features, and exhibit a certain dip angle effect with the change of coal seam dip angle. As the inclination angle of the coal seam increases, the initial breaking position of the direct roof will gradually shift towards the upper area of the working face. At the same time, due to the increased force of gravity along the inclination direction of the working face, the filling degree of the gangue along the inclination direction will be more dense. But the filling length will decrease. As the inclination angle of the coal seam increases, the degree of crack and the range of voids in the high-level rock layers in the upper and middle areas of the working face will also increase. ③ The mechanism of the action of gangue on the surrounding rock in the goaf is mainly reflected in providing lateral stress and vertical support, and is greatly affected by the gravity of gangue, which will show a strong inclination effect with the change of coal seam inclination angle.
-
表 1 FLAC模型煤岩数值参数
Table 1. Numerical parameters of coal and rock in the FLAC model
岩性 密度/
(kg·m−3)体积模量/
MPa剪切模量/
MPa抗拉强度/
MPa黏聚力/
MPa内摩擦角/
( ° )上覆岩层 2 550 9 435 7 876 2.9 3.9 37.5 细砂岩 2 430 7 150 6 460 2.0 2.9 35.2 中砂岩 2 550 9 435 7 876 2.9 3.9 37.5 粗砂岩 2 760 12 300 13 216 3.6 4.8 26.0 4号煤层 1 350 2 381 1 163 0.6 1.3 32.9 粗砂岩 2 760 12 300 13 216 3.6 4.8 26.0 细砂岩 2 430 7 150 6 460 2.0 2.9 35.2 夹矸 2 650 8 640 8 250 2.3 2.7 34.5 5号煤层 1 350 2 381 1 163 0.6 1.3 32.9 粉砂岩 2 312 7 241 6 460 2.7 3.2 27.0 粗砂岩 2 760 12 300 13 216 3.6 4.8 26.0 砾岩 2 492 9 846 11 260 3.0 3.6 28.5 下伏岩层 2 760 12 300 13 216 3.6 4.8 26.0 表 2 PFC模型煤岩细观数值参数
Table 2. Numerical parameters of coal and rock in the PFC model
细观参数 煤 夹矸 细砂岩 黏结键的黏结模量/GPa 2.31 8.32 7.16 黏结键的刚度比 1.78 1.20 1.30 黏结键的法向强度/MPa 6.5 18.7 13.2 黏结键的切向强度/MPa 6.5 18.7 13.2 黏结键的内摩擦角/(°) 32.9 34.5 35.2 颗粒半径范围/m 0.10~0.20 0.10~0.20 0.10~0.20 颗粒密度/(kg·m−3) 1 350 2 650 2 430 表 3 不同倾角条件下矸石充填形态特征参数
Table 3. Characteristic parameters of gangue filling pattern under different inclination angles
参数 倾角/(°) 35 40 45 50 55 充填长度/m 61.7 61.0 59.6 58.2 57.0 接顶长度/m 8.6 9.8 11.3 14.7 18.4 -
[1] 伍永平,贠东风,张淼丰. 大倾角煤层综采基本问题研究[J]. 煤炭学报,2000,25(5):465-468.WU Yongping,YUN Dongfeng,ZHANG Miaofeng. Study on the elementary problems of full-mechanized coal mining in greater pitching seam[J]. Journal of China Coal Society,2000,25(5):465-468. [2] 伍永平,贠东风,解盘石,等. 大倾角煤层长壁综采:进展、实践、科学问题[J]. 煤炭学报,2020,45(1):24-34.WU Yongping,YUN Dongfeng,XIE Panshi,et al. Progress,practice and scientific issues in steeply dipping coal seams fully-mechanized mining[J]. Journal of China Coal Society,2020,45(1):24-34. [3] 张泽天,刘建锋,王璐,等. 组合方式对煤岩组合体力学特性和破坏特征影响的试验研究[J]. 煤炭学报,2012,37(10):1677-1681.ZHANG Zetian,LIU Jianfeng,WANG Lu,et al. Effects of combination mode on mechanical properties and failure characteristics of the coal rock combinations[J]. Journal of China Coal Society,2012,37(10):1677-1681. [4] ZHAO Tongbin,GUO Weiyao,LU Caiping,et al. Failure characteristics of combined coal-rock with different interfacial angles[J]. Geomechanics and Engineering,2016,11(3):345-359. doi: 10.12989/gae.2016.11.3.345 [5] 郭东明,左建平,张毅,等. 不同倾角组合煤岩体的强度与破坏机制研究[J]. 岩土力学,2011,32(5):1333-1339.GUO Dongming,ZUO Jianping,ZHANG Yi,et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles[J]. Rock and Soil Mechanics,2011,32(5):1333-1339. [6] XIA Zhiguo,LIU Shuai,BIAN Zhuang,et al. Mechanical properties and damage characteristics of coal-rock combination with different dip angles[J]. KSCE Journal of Civil Engineering,2021,25(5):1687-1699. doi: 10.1007/s12205-021-1366-1 [7] 伍永平,解盘石,任世广. 大倾角煤层开采围岩空间非对称结构特征分析[J]. 煤炭学报,2010,35(2):182-184.WU Yongping,XIE Panshi,REN Shiguang. Analysis of asymmetric structure around coal face of steeply dipping seam mining[J]. Journal of China Coal Society,2010,35(2):182-184. [8] 解盘石,伍永平,王红伟,等. 大倾角煤层长壁采场倾斜砌体结构与支架稳定性分析[J]. 煤炭学报,2012,37(8):1275-1280.XIE Panshi,WU Yongping,WANG Hongwei,et al. Stability analysis of incline masonry structure and support around longwall mining face area in steeply dipping seam[J]. Journal of China Coal Society,2012,37(8):1275-1280. [9] 王金安,张基伟,高小明,等. 大倾角厚煤层长壁综放开采基本顶破断模式及演化过程(Ⅱ)——周期破断[J]. 煤炭学报,2015,40(8):1737-1745.WANG Jin'an,ZHANG Jiwei,GAO Xiaoming,et al. Fracture mode and evolution of main roof stratum above fully mechanized top coal caving longwall coalface in steeply inclined thick coal seam(Ⅱ):periodic fracture[J]. Journal of China Coal Society,2015,40(8):1737-1745. [10] 屠洪盛,屠世浩,陈芳,等. 基于薄板理论的急倾斜工作面顶板初次变形破断特征研究[J]. 采矿与安全工程学报,2014,31(1):49-54,59.TU Hongsheng,TU Shihao,CHEN Fang,et al. Study on the deformation and fracture feature of steep inclined coal seam roof based on the theory of thin plates[J]. Journal of Mining & Safety Engineering,2014,31(1):49-54,59. [11] 伍永平,王红伟,解盘石. 大倾角煤层长壁开采围岩宏观应力拱壳分析[J]. 煤炭学报,2012,37(4):559-564.WU Yongping,WANG Hongwei,XIE Panshi. Analysis of surrounding rock macro stress arch-shell of longwall face in steeply dipping seam mining[J]. Journal of China Coal Society,2012,37(4):559-564. [12] 王红伟,伍永平,解盘石. 大倾角煤层开采覆岩应力场形成及演化特征[J]. 辽宁工程技术大学学报(自然科学版),2013,32(8):1022-1026.WANG Hongwei,WU Yongping,XIE Panshi. Formation and evolution characteristics of rock stress field in steeply dipping seam mining[J]. Journal of Liaoning Technical University(Natural Science),2013,32(8):1022-1026. [13] 罗生虎,伍永平,刘孔智,等. 大倾角煤层长壁开采空间应力拱壳形态研究[J]. 煤炭学报,2016,41(12):2993-2998.LUO Shenghu,WU Yongping,LIU Kongzhi,et al. Study on the shape of the space stress arch shell in steeply dipping coal seam mining[J]. Journal of China Coal Society,2016,41(12):2993-2998. [14] 伍永平,解盘石,贠东风,等. 大倾角层状采动煤岩体重力−倾角效应与岩层控制[J]. 煤炭学报,2023,48(1):100-113.WU Yongping,XIE Panshi,YUN Dongfeng,et al. Gravity-dip effect and strata control in mining of the steeply dipping coal seam[J]. Journal of China Coal Society,2023,48(1):100-113. [15] 王红伟,伍永平,解盘石,等. 大倾角煤层开采“关键域”岩体结构稳定性分析[J]. 采矿与安全工程学报,2017,34(2):287-294.WANG Hongwei,WU Yongping,XIE Panshi,et al. Analysis of rock structure stability in mining at the critical zone of the steeply dipping seam[J]. Journal of Mining & Safety Engineering,2017,34(2):287-294. [16] 伍永平,皇甫靖宇,解盘石,等. 基于大范围岩层控制技术的大倾角煤层区段煤柱失稳机理[J]. 煤炭学报,2018,43(11):3062-3071.WU Yongping,HUANGFU Jingyu,XIE Panshi,et al. Mechanism of instability of section coal pillar in steeply dipping seam based on large-scale strata control technology[J]. Journal of China Coal Society,2018,43(11):3062-3071. [17] 王红伟,焦建强,伍永平,等. 急倾斜厚煤层短壁综放采场承载结构泛化特征[J]. 煤炭科学技术,2021,49(11):56-64.WANG Hongwei,JIAO Jianqiang,WU Yongping,et al. Generalization characteristics of bearing structure in short wall fully-mechanized top-coal caving mining face of steeply inclined thick seam[J]. Coal Science and Technology,2021,49(11):56-64. [18] 伍永平,胡博胜,解盘石,等. 大倾角工作面飞矸冲击损害及其控制[J]. 煤炭学报,2018,43(10):2694-2702.WU Yongping,HU Bosheng,XIE Panshi,et al. Impact damage of flying gangue in steeply dipping seams and its control[J]. Journal of China Coal Society,2018,43(10):2694-2702. [19] 刘明,伍永平,耿霜,等. 大倾角煤层开采飞矸威胁等级评估[J]. 煤炭学报,2020,45(11):3688-3695.LIU Ming,WU Yongping,GENG Shuang,et al. Threat level assessment of flying gangue in steep coal seam mining[J]. Journal of China Coal Society,2020,45(11):3688-3695. [20] 罗生虎,田程阳,伍永平,等. 大倾角煤层长壁开采顶板受载与变形破坏倾角效应[J]. 中国矿业大学学报,2021,50(6):1041-1050.LUO Shenghu,TIAN Chengyang,WU Yongping,et al. Obliquity effect of asymmetric deformation and failure of roof in longwall mining of steeply inclined seam[J]. Journal of China University of Mining & Technology,2021,50(6):1041-1050.