留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无煤柱切顶留巷覆岩破坏特征及微震实测研究

张颖异 王同

张颖异,王同. 无煤柱切顶留巷覆岩破坏特征及微震实测研究[J]. 工矿自动化,2024,50(3):131-141.  doi: 10.13272/j.issn.1671-251x.2023100062
引用本文: 张颖异,王同. 无煤柱切顶留巷覆岩破坏特征及微震实测研究[J]. 工矿自动化,2024,50(3):131-141.  doi: 10.13272/j.issn.1671-251x.2023100062
ZHANG Yingyi, WANG Tong. Study on the overburden failure features and microseismic measurements in non-pillar gob-side entry retaining by roof cutting[J]. Journal of Mine Automation,2024,50(3):131-141.  doi: 10.13272/j.issn.1671-251x.2023100062
Citation: ZHANG Yingyi, WANG Tong. Study on the overburden failure features and microseismic measurements in non-pillar gob-side entry retaining by roof cutting[J]. Journal of Mine Automation,2024,50(3):131-141.  doi: 10.13272/j.issn.1671-251x.2023100062

无煤柱切顶留巷覆岩破坏特征及微震实测研究

doi: 10.13272/j.issn.1671-251x.2023100062
基金项目: 国家自然科学基金项目(52204151)。
详细信息
    作者简介:

    张颖异(1997—),男,陕西延安人,研究实习员,硕士,主要研究方向为复杂难采煤层开采,E-mail:1257544847@qq.com

  • 中图分类号: TD327

Study on the overburden failure features and microseismic measurements in non-pillar gob-side entry retaining by roof cutting

  • 摘要: 为进一步研究无煤柱切顶留巷技术开采后的覆岩破坏规律,以柠条塔煤矿S1201−Ⅱ工作面为工程背景,采用物理相似模拟与数值模拟的研究手段,结合现场微震监测技术建立了微震波形数据库,研究了随工作面持续开采,无煤柱切顶留巷不同阶段的覆岩采动裂隙演化及应力空间展布特征,得出了工作面覆岩周期性破断规律。研究结果表明:工作面发生初次来压时的覆岩裂隙发育高度为57.6 m,切顶前中部裂隙带发育高度为95.5~96.1 m,裂采比为23.8~24.0,边缘侧裂隙发育高度为105.9~106.4 m,裂采比为26.4~26.6。切顶后工作面两侧裂隙带最终发育高度为104.3~105.2 m,裂采比为26.1~26.3,工作面中部裂隙带由于上覆岩层的不断压实弥合,最终发育高度为94.3~95.2 m,裂采比为23.6~23.8。当巷道分别处于掘进、切缝阶段,顶板位移基本没有产生改变;当其进入顶板下沉、切顶成巷阶段,顶板位移不断增大。切顶卸压完成后,巷道侧支承压力峰值增大,表明切缝之后的工作面跨度进一步增大,倾向支承压力不断增大;工作面顶板卸压效果显著,顶板产生大范围应力释放现象。在该工作面布置了微震监测系统,发现微震事件的周期性产生与工作面周期来压有强关联性,其发展过程可划分为萌芽期—发展期—高潮期,进一步综合得出覆岩的周期性破断演化规律。

     

  • 图  1  工作面地层综合柱状图

    Figure  1.  Comprehensive bar chart of working face formation

    图  2  无煤柱切顶留巷技术

    Figure  2.  Technology of non-pillar gob-side entry retaining by roof cutting

    图  3  实验模型

    Figure  3.  Experimental model

    图  4  覆岩破断演化规律

    Figure  4.  Evolution law of overburden breaking

    图  5  切顶前裂隙发育高度

    Figure  5.  Height of crack development before roof cutting

    图  6  切顶留巷覆岩裂隙发育特征

    Figure  6.  Overburden crack development features of gob-side entry retaining by roof cutting

    图  7  裂隙发育特征

    Figure  7.  Features of crack development

    图  8  数值计算模型

    Figure  8.  Numerical calculation model

    图  9  围岩应力演化过程

    Figure  9.  Stress evolution process of surrounding rock

    图  10  巷道顶板垂直应力演化过程

    Figure  10.  Evolution process of vertical stress of roadway roof

    图  11  围岩位移演化过程

    Figure  11.  Displacement evolution process of surrounding rock

    图  12  巷道顶板位移演化过程

    Figure  12.  Displacement evolution process of roadway roof

    图  13  微震监测系统组成

    Figure  13.  Composition of microseismic monitoring system

    图  14  微震传感器布置方案

    Figure  14.  Arrangement scheme of the microseismic sensor

    图  15  井下波形数据库

    Figure  15.  Mine waveform database

    图  16  三次周期来压时微震事件俯视图

    Figure  16.  Top view of microseismic events during three periodic pressures

    图  17  三次周期来压时微震事件剖面图

    Figure  17.  Sectional view of microseismic events during three periodic pressures

    表  1  模拟实验相似材料配比方案

    Table  1.   Simulation experiment for similar material matching scheme

    岩层 厚度/cm 材料质量/kg
    河砂 石膏 大白粉 粉煤灰
    细粒砂岩 6 8.40 0.48 0.72
    砂质泥岩 2 8.64 0.29 0.67
    细粒砂岩 8 8.40 0.48 0.72
    粗粒砂岩 2 8.64 0.29 0.67
    粉砂岩 16 8.53 0.21 0.86
    中粒砂岩 14 8.64 0.29 0.67
    细粒砂岩 6 8.40 0.48 0.72
    1−2上煤 3 1.96 0.10 0.49 1.96
    粉砂岩 11 8.53 0.21 0.86
    细粒砂岩 9 8.40 0.48 0.72
    中粒砂岩 19 8.64 0.29 0.67
    2−2 4 1.96 0.10 0.49 1.96
    粉砂岩 16 8.53 0.21 0.86
    下载: 导出CSV

    表  2  煤岩体物理力学参数

    Table  2.   Mechanical parameters of coal and rock

    岩石 密度/
    (kg·m-3
    体积模
    量/MPa
    剪切模
    量/MPa
    抗拉强
    度/MPa
    黏聚
    力/MPa
    内摩擦
    角/(°)
    细砂岩 2 420 4 167 2 869 1.8 3.5 37
    中粒砂岩 2 550 3 435 3 876 1.9 3.9 37.5
    煤层 1 350 2 381 1 163 0.6 1.3 32.9
    粉砂岩 2 530 3 372 3 816 1.7 4.5 20.4
    细粒砂岩 2 640 9 302 9 137 2.1 4.2 28
    下载: 导出CSV

    表  3  周期来压步距和周期来压强度统计

    Table  3.   Statistical of the periodic weighting step and pressure strength

    来压时简( 年−月−日) 工作面上端头侧 工作面中部 工作面下端头侧
    来压强度/MPa 来压步距/m 来压强度/MPa 来压步距/m 来压强度/MPa 来压步距/m
    2018−12−12 29.24 15.0 38.6 17.3 39.2 15.6
    2018−12−15 31.6 16.3 36.9 14.8 36.4 17.4
    2018−12−17 28.6 15.8 38.6 18.9 37.4 21.3
    2018−12−19 29.3 20.3 37.7 26.0 36.5 22.9
    2018−12−22 32.6 22.7 37.4 25.0 37.5 23.0
    2018−12−24 35.7 24.0 37.5 24.7 38.9 24.7
    2018−12−26 39.8 24.8 38.2 23.1 34.9 15.7
    2018−12−28 34.7 19.6 38.1 17.0 35.6 21.4
    2019−01−02 35.0 15.6 39.5 18.2 36.8 16.9
    2019−01−04 37.6 17.0 37.9 18.9 37.6 15.4
    2019−01−06 36.4 15.0 36.8 17.3 34.8 15.6
    下载: 导出CSV
  • [1] 何满潮,宋振骐,王安,等. 长壁开采切顶短壁梁理论及其110工法——第三次矿业科学技术变革[J]. 煤炭科技,2017(1):1-9,13.

    HE Manchao,SONG Zhenqi,WANG An,et al. Theory of longwall mining by using roof cuting shortwall team and 110 method-the third mining science and technology reform[J]. Coal Science & Technology Magazine,2017(1):1-9,13.
    [2] 张国锋,何满潮,俞学平,等. 白皎矿保护层沿空切顶成巷无煤柱开采技术研究[J]. 采矿与安全工程学报,2011,28(4):511-516.

    ZHANG Guofeng,HE Manchao,YU Xueping,et al. Research on the technique of no-pillar mining with gob-side entry formed by advanced roof caving in the protective seam in Baijiao Coal Mine[J]. Journal of Mining & Safety Engineering,2011,28(4):511-516.
    [3] 赵萌烨,黄庆享,朱磊,等. 无煤柱切顶沿空留巷顶板“短砌体—铰接”结构及支撑阻力研究[J]. 煤炭学报,2021,46(增刊1):84-93.

    ZHAO Mengye,HUANG Qingxiang,ZHU Lei,et al. Research on roof structure and support resistance of gob-side entry retaining with roof cutting and non-pillar mining[J]. Journal of China Coal Society,2021,46(S1):84-93.
    [4] 华心祝. 我国沿空留巷支护技术发展现状及改进建议[J]. 煤炭科学技术,2006,34(12):78-81.

    HUA Xinzhu. Development status and improved proposals on gob-side entry retaining support technology in China[J]. Coal Science and Technology,2006,34(12):78-81.
    [5] 王亚军,何满潮,张科学,等. 无煤柱自成巷开采巷道矿压显现特征及控制对策[J]. 采矿与安全工程学报,2018,35(4):677-685.

    WANG Yajun,HE Manchao,ZHANG Kexue,et al. Strata behavior characteristics and control countermeasures for the gateroad surroundings in innovative non-pillar mining method with gateroad formed automatically[J]. Journal of Mining & Safety Engineering,2018,35(4):677-685.
    [6] 朱珍,何满潮,王琦,等. 柠条塔煤矿自动成巷无煤柱开采新方法[J]. 中国矿业大学学报,2019,48(1):46-53.

    ZHU Zhen,HE Manchao,WANG Qi,et al. An innovative non-pillar mining method for gateroad formation automatically and its application in Ningtiaota Coal Mine[J]. Journal of China University of Mining & Technology,2019,48(1):46-53.
    [7] 何满潮,马资敏,郭志飚,等. 深部中厚煤层切顶留巷关键技术参数研究[J]. 中国矿业大学学报,2018,47(3):468-477.

    HE Manchao,MA Zimin,GUO Zhibiao,et al. Key parameters of the gob-side entry retaining formed by roof cutting and pressure release in deep medium-thickness coal seams[J]. Journal of China University of Mining & Technology,2018,47(3):468-477.
    [8] 迟宝锁,周开放,何满潮,等. 大采高工作面切顶留巷支护参数优化研究[J]. 煤炭科学技术,2017,45(8):128-133.

    CHI Baosuo,ZHOU Kaifang,HE Manchao,et al. Optimization research on supporting parameters of roof cutting entry retaining with large mining height face[J]. Coal Science and Technology,2017,45(8):128-133.
    [9] WANG Qi,HE Manchao,YANG Jun,et al. Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,2018,110:1-8. doi: 10.1016/j.ijrmms.2018.07.005
    [10] HE Manchao,GONG Weili,WANG Jiong,et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance[J]. International Journal of Rock Mechanics and Mining Sciences. 2014,67:29-42.
    [11] 唐文胜,张国锋,刘小强,等. 异形断面短臂梁卸压效应模拟分析[J]. 中国高新技术企业,2016(9):162-163.

    TANG Wensheng,ZHANG Guofeng,LIU Xiaoqiang,et al. Simulation analysis of pressure relief effect of special short arm beam[J]. China High-Tech Enterprises,2016(9):162-163.
    [12] 金龙. 厚煤层综放工作面安全高效开采技术及应用[D]. 徐州:中国矿业大学,2020.

    JIN Long. Technology and application of safe and efficient mining in fully mechanized caving face of thick coal seam[D]. Xuzhou:China University of Mining and Technology,2020.
    [13] 顾有富,王慧芹. 切顶卸压沿空留巷技术在土城矿的应用[J]. 能源与节能,2013(1):6-7.

    GU Youfu,WANG Huiqin. Application of top cutting pressure-relief gob-side entry retaining technology in Tucheng Mine[J]. Energy and Energy Conservation,2013(1):6-7.
    [14] 刘衍利,黎卫兵,黄星源. 切顶卸压爆破技术在沿空留巷中的应用[J]. 煤矿安全,2014,45(6):132-135.

    LIU Yanli,LI Weibing,HUANG Xingyuan. The application of roof cutting and pressure relief blasting technology in gob-side entry retaining[J]. Safety in Coal Mines,2014,45(6):132-135.
    [15] 宋润权,谢家鹏. 切顶卸压技术在工作面及沿空巷道维护中的应用[J]. 煤炭科技,2012(3):52-54.

    SONG Runquan,XIE Jiapeng. Application of roof cutting and pressure unloading technology in the maintenance of working face and along the empty roadway[J]. Coal Science & Technology Magazine,2012(3):52-54.
    [16] 蔡洪林,尹贤坤,汤朝均,等. 切顶卸压沿空留巷无煤柱开采技术研究与应用[J]. 矿业安全与环保,2012,39(5):15-18.

    CAI Honglin,YIN Xiankun,TANG Chaojun,et al. Research and application of coal pillar mining technology for cutting pressure discharge along the empty lane[J]. Mining Safety & Environmental Protection,2012,39(5):15-18.
    [17] 吴海波,赵凯. 微震监测技术在复杂地质煤矿开采优化及顶板控制中的应用[J]. 现代矿业,2023,39(9):14-17,22.

    WU Haibo,ZHAO Kai. Application of microseismic monitoring technology in mining optimization and roof control of complex geological coal mine[J]. Modern Mining,2023,39(9):14-17,22.
    [18] 李浩荡,蓝航,杜涛涛,等. 宽沟煤矿坚硬厚层顶板下冲击地压危险时期的微震特征及解危措施[J]. 煤炭学报,2013,38(增刊1):6-11.

    LI Haodang,LAN Hang,DU Taotao,et al. Micro-seismic characteristic and danger-relief method in rock-burst danger period of mining face under hard and thick roof of Kuangou Mine[J]. Journal of China Coal Society,2013,38(S1):6-11.
    [19] 孔令海,李峰,欧阳振华,等. 采动覆岩裂隙分布特征的微震监测研究[J]. 煤炭科学技术,2016,44(1):109-113,143.

    KONG Linghai,LI Feng,OUYANG Zhenhua,et al. Study on microseismic monitoring and measuring of fracture distribution features in mining overburden strata[J]. Coal Science and Technology,2016,44(1):109-113,143.
    [20] 孔令海,王永仁,李少刚. 房柱采空区下回采工作面覆岩运动规律研究[J]. 煤炭科学技术,2015,43(5):26-29.

    KONG Linghai,WANG Yongren,LI Shaogang. Analysis on overburden strata movement law of coal mining face under goaf of room and pillar mining face[J]. Coal Science and Technology,2015,43(5):26-29.
    [21] 李鸿昌. 压力的相似模拟实验[M]. 徐州:中国矿业大学出版社,1988.

    LI Hongchang. A similar simulation experiment for the pressure[M]. Xuzhou:China University of Mining and Technology Press,1988.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  29
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-21
  • 修回日期:  2024-03-10
  • 网络出版日期:  2024-03-18

目录

    /

    返回文章
    返回