留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层路由注意力机制的煤粒粒度定量分析

程德强 郑丽娟 刘敬敬 寇旗旗 江鹤

程德强,郑丽娟,刘敬敬,等. 基于双层路由注意力机制的煤粒粒度定量分析[J]. 工矿自动化,2024,50(2):9-17.  doi: 10.13272/j.issn.1671-251x.2023100002
引用本文: 程德强,郑丽娟,刘敬敬,等. 基于双层路由注意力机制的煤粒粒度定量分析[J]. 工矿自动化,2024,50(2):9-17.  doi: 10.13272/j.issn.1671-251x.2023100002
CHENG Deqiang, ZHENG Lijuan, LIU Jingjing, et al. Quantitative analysis of coal particle size based on bi-level routing attention mechanism[J]. Journal of Mine Automation,2024,50(2):9-17.  doi: 10.13272/j.issn.1671-251x.2023100002
Citation: CHENG Deqiang, ZHENG Lijuan, LIU Jingjing, et al. Quantitative analysis of coal particle size based on bi-level routing attention mechanism[J]. Journal of Mine Automation,2024,50(2):9-17.  doi: 10.13272/j.issn.1671-251x.2023100002

基于双层路由注意力机制的煤粒粒度定量分析

doi: 10.13272/j.issn.1671-251x.2023100002
基金项目: 国家自然科学基金项目(52204177,52304182);济宁市重点研发计划项目(2021KJHZ013,2023KJHZ007);徐州市推动科技创新专项资金项目(KC23401)。
详细信息
    作者简介:

    程德强(1979—),男,河南洛阳人,教授,博士,博士研究生导师,主要研究方向为图像处理、机器视觉,E-mail:chengdq@cumt.edu.cn

    通讯作者:

    江鹤(1990—),男,江苏徐州人,讲师,博士,主要研究方向为图像超分辨率重建、图像识别,E-mail: jianghe@cumt.edu.cn

  • 中图分类号: TD391.41

Quantitative analysis of coal particle size based on bi-level routing attention mechanism

  • 摘要: 煤粒粒度分布特征与煤中甲烷气体传播规律的分析密切相关。目前,基于图像分割的煤粒粒度分析方法已成为获取煤粒粒度的主流方案之一,但存在上下文信息丢失、煤粒特征融合不当造成煤粒漏分割和过分割等问题。针对上述问题,设计了一种基于双层路由注意力机制(BRA)的煤粒粒度分析模型。在残差U型网络ResNet−UNet中嵌入BRA模块,得到B−ResUNet网络模型:为减少在煤粒分割过程中出现的漏分割问题,在ResNet−UNet网络的上采样前添加BRA模块,使网络根据上一层的特征调整当前特征层的重要性,增强特征的表达能力,提高长距离信息的传递能力;为减少在煤粒分割过程中出现的过分割问题,在ResNet−UNet网络的特征拼接模块后添加BRA模块,通过动态选择和聚合重要特征,实现更有效的特征融合。对分割出的煤粒进行特征信息提取,针对实验分析中采用的煤粒数据集的煤粒粒度与细胞大小相当,为精确表征煤粒粒度,采用等效圆粒径获取煤粒粒度及粒度分布。实验结果表明:① B−ResUNet网络模型的准确率、平均交并比、召回率较ResNet−UNet基础网络分别提高了0.6%,14.3%,35.9%,准确率达99.6%,平均交并比达92.6%,召回率达94.4%,B−ResUNet网络模型在煤样中具有较好的分割效果,能够检测出较为完整的颗粒结构。② 在上采样前和特征拼接后均引入BRA模块时,网络对煤粒的边缘区域给予了足够的关注,且对一些不太重要的区域减少了关注度,从而提高了网络的计算效率。③ 煤粒的粒度大小在1~2 mm内呈相对均衡的分布趋势,粒度在1~2 mm内的煤粒占比最大为99.04%,最小为90.59%,表明基于BRA的图像处理方法在粒度分析方面具有较高的准确性。

     

  • 图  1  BRA模块结构

    Figure  1.  Structure of the BRA module

    图  2  B−ResUNet网络模型结构

    Figure  2.  Structure of B-ResUNet network model

    图  3  残差块

    Figure  3.  Residual block

    图  4  等效圆粒径原理

    Figure  4.  Principle of the equivalent circular particle size

    图  5  煤样可视化结果

    Figure  5.  Visualization of coal sample

    图  6  不同网络模型的语义分割结果

    Figure  6.  Semantic segmentation results for the different network models

    图  7  BRA模块的消融实验

    Figure  7.  Ablation experiments of the BRA module

    图  8  6组煤粒的粒度分布

    Figure  8.  Particle size distribution of six groups of coal particles

    表  1  不同网络模型评价指标对比

    Table  1.   Comparison of the evaluation indexes of different network models %

    模型 准确率 平均交并比 召回率
    PAN 98.3 62.8 27.8
    PSPNet 98.4 66.6 36.9
    U−Net 99.1 79.4 62.0
    Link−Net 97.9 68.6 60.3
    ResNet−UNet 99.0 78.3 58.5
    B−ResUNet 99.6 92.6 94.4
    下载: 导出CSV

    表  2  各网络模型性能

    Table  2.   Network performan %

    模型 准确率 平均交并比 召回率
    ResNet−UNet 99.0 78.3 58.5
    ResNet−采样BRA 99.4 87.2 79.0
    ResNet−拼接BRA 99.2 82.6 66.5
    B−ResUNet 99.6 92.6 94.4
    下载: 导出CSV

    表  3  不同方法测量粒度的准确率

    Table  3.   Accuracy of particle size measurement by different methods %

    测量方法 准确率
    第1组 第2组 第3组 第4组 第5组 第6组
    LPA方法 62.18 57.78 56.44 38.75 67.35 68.78
    形态学方法 84.50 87.83 87.82 92.0 88.48 94.29
    本文方法 97.42 97.37 89.80 95.56 96.47 96.15
    下载: 导出CSV
  • [1] 邢震,韩安,陈晓晶,等. 基于工业互联网的智能矿山灾害数字孪生研究[J]. 工矿自动化,2023,49(2):23-30,55.

    XING Zhen,HAN An,CHEN Xiaojing,et al. Research on intelligent mine disaster digital twin based on industrial Internet[J]. Journal of Mine Automation,2023,49(2):23-30,55.
    [2] 张哲,魏晨慧,刘书源,等. 煤粒尺寸对气体扩散过程影响的数值模拟研究[J]. 矿业研究与开发,2021,41(7):85-92.

    ZHANG Zhe,WEI Chenhui,LIU Shuyuan,et al. Numerical simulation study of the influence of coal particle size on gas diffusion process[J]. Mining Research and Development,2021,41(7):85-92.
    [3] 马卫国,曾立,曾琦,等. 真空过滤数值模拟和试验验证[J]. 流体机械,2022,50(12):49-55.

    MA Weiguo,ZENG Li,ZENG Qi,et al. Numerical simulation and experimental verification of vacuum filtration[J]. Fluid Machinery,2022,50(12):49-55.
    [4] 李文凯,吴玉新,黄志民,等. 激光粒度分析和筛分法测粒径分布的比较[J]. 中国粉体技术,2007(5):10-13.

    LI Wenkai,WU Yuxin,HUANG Zhimin,et al. Measurement results comparison between laser particle analyzer and sieving method in particle size distribution[J]. China Powder Science and Technology,2007(5):10-13.
    [5] LIU Jingjing,CHENG Deqiang,LI Yunlong,et al. Quantitative evaluation of the influence of coal particle size distribution on gas diffusion coefficient by image processing method[J]. Fuel,2022,314:122946. doi: 10.1016/j.fuel.2021.122946
    [6] GUIDA G,VIGGIANI G M B,CASINI F. Multi-scale morphological descriptors from the fractal analysis of particle contour[J]. Acta Geotech,2020,15(5):1067-1080. doi: 10.1007/s11440-019-00772-3
    [7] SU D,YAN W M. Prediction of 3D size and shape descriptors of irregular granular particles from projected 2D images[J]. Acta Geotech,2020,15(6):1533-1555. doi: 10.1007/s11440-019-00845-3
    [8] LAI Zhengshou,CHEN Qiushi. Reconstructing granular particles from X-ray computed tomography using the TWS machine learning tool and the level set method[J]. Acta Geotech,2019,14(1):1-18. doi: 10.1007/s11440-018-0759-x
    [9] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [10] 李颖,李秀宇,卢兆林,等. 基于深度学习的煤粉颗粒CT图像分割方法[J]. 计算机工程与设计,2022,43(8):2252-2259.

    LI Ying,LI Xiuyu,LU Zhaolin,et al. Coal particle CT image segmentation method based on deep learning[J]. Computer Engineering and Design,2022,43(8):2252-2259.
    [11] 徐江川,金国强,朱天奕,等. 基于深度学习U−Net模型的石块图像分割算法[J]. 工业控制计算机,2018,31(4):98-99,102.

    XU Jiangchuan,JIN Guoqiang,ZHU Tianyi,et al. Segmentation of rock images based on U-Net[J]. Industrial Control Computer,2018,31(4):98-99,102.
    [12] 王征,张赫林,李冬艳. 特征压缩激活作用下U−Net网络的煤尘颗粒特征提取[J]. 煤炭学报,2021,46(9):3056-3065.

    WANG Zheng,ZHANG Helin,LI Dongyan. Feature extraction of coal dust particles based on U-Net combined with squeeze and excitation module[J]. Journal of China Coal Society,2021,46(9):3056-3065.
    [13] ZHU Lei,WANG Xinjiang,KE Zhanghan,et al. BiFormer:vision transformer with bi-level routing attention[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:10323-10333.
    [14] 梅昕苏. 基于多粒度Top−k查询的流式数据事件获取方法研究[D]. 沈阳:辽宁大学,2019.

    MEI Xinsu. Research on streaming data event acquisition method based on multi-granular Top-k query[D]. Shenyang:Liaoning University,2019.
    [15] LIU Huajie,XU Ke. Recognition of gangues from color images using convolutional neural networks with attention mechanism[J]. Measurement,2023,206:1-13.
    [16] 伊建峰,黎思成,吕珊,等. 基于频域数据增强及YOLOv7的动火作业检测模型[J]. 计算机应用,2023,43(增刊2):285-290.

    YI Jianfeng,LI Sicheng,LYU Shan,et al. Hot work detection model based on frequency domain data enhancement and YOLOv7[J]. Journal of Computer Applications,2023,43(S2):285-290.
    [17] ZHOU Buzhuang,YANG Shengqiang,JIANG Xiaoyuan,et al. Experimental study on oxygen adsorption capacity and oxidation characteristics of coal samples with different particle sizes[J]. Fuel,2023,331. DOI: 10.1016/J.FUEL.2022.125954.
    [18] MIYAKAWA T,TAKETANI F,TOBO Y,et al. Measurements of aerosol particle size distributions and INPs over the Southern Ocean in the late austral summer of 2017 on board the R/V Mirai:importance of the marine boundary layer structure[J]. Earth and Space Science,2023,10(3). DOI: 10.1029/2022EA002736.
    [19] TANG Songlei,LIU Qiang,TANG Hong,et al. Study on the movement of pulverized coal particles in fractal fracture network[J]. ACS Omega,2023. DOI: 10.1021/acsomega.3c02902.
    [20] REN Sucheng,ZHOU Daquan,HE Shengfeng,et al. Shunted self-attention via multi-scale token aggregation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:10853-10862.
    [21] LIU Jingjing,LIU Ruihang,ZHANG Haoxiang,et al. Fast image processing method for coal particle cluster box dimension measurement and its application in diffusion coefficient testing[J]. Fuel,2023,352. DOI: 10.1016/J.FUEL.2023.129050.
    [22] RUSSELL B,TORRALBA A,MURPHY K P,et al. LabelMe:a database and web-based tool for image annotation[J]. International Journal of Computer Vision,2008,77(1/2/3):157-173.
    [23] LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
    [24] ZHU Xiliang,CHENG Zhaoyun,WANG Sheng,et al. Coronary angiography image segmentation based on PSPNet[J]. Computer Methods and Programs in Biomedicine,2021. DOI: 10.1016/J.CMPB.2020.105897.
    [25] DU Getao,GAO Xu,LIANG Jimin,et al. Medical image segmentation based on U-net:a review[J]. Journal of Imaging Science and Technology,2020,64(2). DOI: 10.2352/J.ImagingSci.Technol.2020.64.2.020508.
    [26] CAI Junxiong,MU Taijiang,LAI Yukun,et al. LinkNet:2D-3D linked multi-modal network for online semantic segmentation of RGB-D videos[J]. Computers & Graphics,2021,98:37-47.
    [27] QIN Jiayin,SUN Yibo,WU Luji. Research on gear surface damage identification based on the ResNet Network[C]. The 2nd International Conference on Mechanical Automation and Electronic Information Engineering,Guizhou,2023. DOI: 10.1088/1742-6596/2419/1/012090.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  65
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-03
  • 修回日期:  2024-02-05
  • 网络出版日期:  2024-03-05

目录

    /

    返回文章
    返回