留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PSO−Elman神经网络的井底风温预测模型

程磊 李正健 史浩镕 王鑫

程磊,李正健,史浩镕,等. 基于PSO−Elman神经网络的井底风温预测模型[J]. 工矿自动化,2024,50(1):131-137.  doi: 10.13272/j.issn.1671-251x.2023090062
引用本文: 程磊,李正健,史浩镕,等. 基于PSO−Elman神经网络的井底风温预测模型[J]. 工矿自动化,2024,50(1):131-137.  doi: 10.13272/j.issn.1671-251x.2023090062
CHENG Lei, LI Zhengjian, SHI Haorong, et al. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation,2024,50(1):131-137.  doi: 10.13272/j.issn.1671-251x.2023090062
Citation: CHENG Lei, LI Zhengjian, SHI Haorong, et al. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation,2024,50(1):131-137.  doi: 10.13272/j.issn.1671-251x.2023090062

基于PSO−Elman神经网络的井底风温预测模型

doi: 10.13272/j.issn.1671-251x.2023090062
基金项目: 国家自然科学基金资助项目(U1904210)。
详细信息
    作者简介:

    程磊(1970—),男,安徽砀山人,教授,博士,主要从事矿山通风与安全方面的研究工作,E-mail:cheng@hpu.edu.cn

  • 中图分类号: TD727.2

A bottom air temperature prediction model based on PSO-Elman neural network

  • 摘要: 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO−Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO−Elman模型迭代41次后收敛,说明PSO−Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO−Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0 ℃,0.278 3,1.95%,决定系数$ {{R}}^{\text{2}} $为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO−Elman模型的相对误差范围为−4.69%~1.27%,绝对误差范围为−1.06~0.29 ℃,MSE为0.26,整体预测精度可满足井下实际需要。

     

  • 图  1  Elman神经网络结构

    Figure  1.  Elman neural network structure

    图  2  PSO算法流程

    Figure  2.  Flow of particle swarm optimization algorithm

    图  3  PSO−Elman模型流程

    Figure  3.  Flow of PSO−Elman model

    图  4  预测模型的进化曲线

    Figure  4.  Evolution curves of prediction models

    图  5  4种预测模型在测试集上的预测结果

    Figure  5.  Prediction results of four prediction models on test set

    图  6  4种预测模型在测试集上的预测误差

    Figure  6.  Prediction errors of four prediction models on test set

    图  7  井底风温预测值与真实值对比

    Figure  7.  Comparison between predicted and actual values of bottom air temperature

    表  1  样本数据

    Table  1.   Sample data

    序号 地面大气
    压力/Pa
    入风
    温度/℃
    入风相对
    湿度/%
    井筒
    深度/m
    井底
    风温/℃
    1 99862.8 26.8 80.23 558.90 25.6
    2 99936.2 27.7 76.78 558.90 27.8
    3 99868.9 26.5 80.05 552.50 26.5
    4 99982.3 27.6 74.26 552.50 27.6
    5 99965.1 26.8 78.88 673.20 25.3
    $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
    63 92240.0 14.0 51.70 417.54 16.2
    64 91860.0 13.8 58.40 417.54 16.0
    65 91420.0 12.2 67.60 417.54 15.2
    下载: 导出CSV

    表  2  4种模型的井底风温预测结果及误差

    Table  2.   Prediction results and errors of bottom air temperature of four models

    样本
    编号
    真实
    值/℃
    BP神经网络模型 SVR模型 Elman模型 PSO−Elman模型
    预测
    值/℃
    绝对误
    差/℃
    相对误
    差/%
    预测
    值/℃
    绝对误
    差/℃
    相对误
    差/%
    预测
    值/℃
    绝对误
    差/℃
    相对误
    差/%
    预测
    值/℃
    绝对误
    差/℃
    相对误
    差/%
    1 27.9 27.2131 −0.6869 −2.46 27.8983 −0.0017 −0.01 27.7709 −0.1291 −0.46 27.8026 −0.0974 −0.35
    2 27.6 26.9595 −0.6405 −2.32 27.7180 0.1180 0.43 27.0653 0.0053 0.02 27.6048 0.0048 −0.02
    3 28.9 27.2982 −1.6018 −5.54 27.9765 −0.9235 −3.20 27.8461 −1.0539 −3.65 27.8981 −1.0019 −3.47
    4 27.4 27.1367 −0.2633 −0.96 27.6248 0.2248 0.82 27.5246 0.1246 0.45 27.6149 0.2149 0.78
    5 28.0 27.4548 −0.5452 −1.95 28.3935 0.3935 1.41 28.1950 0.1950 0.70 28.1494 0.1494 0.53
    6 16.2 16.4894 0.2894 1.79 15.2606 −0.9394 −5.80 15.1536 −1.0464 −6.46 16.3820 0.1820 1.12
    7 15.8 14.8908 −0.9092 −5.75 14.6212 −1.1788 −7.46 14.6948 −1.1052 −6.99 14.7649 −1.0351 −6.55
    8 16.2 15.2269 −0.9731 −6.01 15.0037 −1.1963 −7.38 14.9791 −1.2209 −7.54 15.4598 −0.7402 −4.57
    9 16.0 16.4385 0.4385 2.74 14.8663 −1.1337 −7.09 14.8427 −1.1573 −7.23 15.7786 −0.2214 −1.38
    10 15.2 17.7870 2.5870 17.02 13.7536 −1.4464 −9.52 13.9971 −1.2029 −7.91 15.3130 0.1130 −0.74
    下载: 导出CSV

    表  3  4种预测模型的评估指标

    Table  3.   Evaluation indicators of four prediction models

    模型 MAE/℃ MSE MAPE/% $ {R}^{2} $
    BP神经网络 0.8935 1.2557 4.65 0.9658
    SVR 0.7556 0.8153 4.31 0.9985
    Elman 0.7241 0.7774 4.14 0.9788
    PSO−Elman 0.3760 0.2783 1.95 0.9924
    下载: 导出CSV

    表  4  井下实测数据

    Table  4.   Underground measured data

    测点位置 入风温度/℃ 入风相对
    湿度/%
    地面大气
    压力/Pa
    井筒深度/m 井底风温/℃
    副井 20.8 71.40 104610 521.5 24.3
    21.2 82.00 104660 521.5 23.0
    回风联络巷 21.6 88.00 102668 521.5 22.6
    一车场 21.8 86.90 104633 521.5 22.8
    运输大巷 22.4 78.80 106604 521.5 24.6
    下载: 导出CSV

    表  5  井底风温预测数据评估结果

    Table  5.   Evaluation results of prediction data of bottom air temperature

    真实值/℃ 预测值/℃ 绝对误差/℃ 相对误差% MSE
    24.3 24.46 0.14 0.66 0.26
    23.0 22.82 −0.18 −0.78
    22.6 21.54 −1.06 −4.69
    22.8 23.09 0.29 1.27
    24.6 24.38 −0.22 −0.89
    下载: 导出CSV
  • [1] 王超,李岳峰,张成良. 基于不同指标无量纲化方法的岩爆预测模型优选[J]. 中国安全生产科学技术,2020,16(2):24-29.

    WANG Chao,LI Yuefeng,ZHANG Chengliang. Optimization of rockburst prediction model based on different index dimensionless methods[J]. Journal of Safety Science and Technology,2020,16(2):24-29.
    [2] 杨小彬,裴艳宇,程虹铭,等. 基于SOFM神经网络模型的岩爆烈度等级预测方法[J]. 岩石力学与工程学报,2021,40(增刊1):2708-2715.

    YANG Xiaobin,PEI Yanyu,CHENG Hongming,et al. Prediction method of rockburst intensity grade based on SOFM neural network model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S1):2708-2715.
    [3] 付华,付昱,赵俊程,等. 基于KPCA−ARIMA算法的瓦斯涌出量预测[J]. 辽宁工程技术大学学报(自然科学版),2022,41(5):406-412.

    FU Hua,FU Yu,ZHAO Juncheng,et al. Prediction of gas emission based on KPCA-ARIMA algorithm[J]. Journal of Liaoning Technical University(Natural Science),2022,41(5):406-412.
    [4] 马恒,任美学,高科. 基于随机搜索优化XGBoost的瓦斯涌出量预测模型[J]. 中国安全生产科学技术,2022,18(5):129-134.

    MA Heng,REN Meixue,GAO Ke. Prediction model of gas emission amount based on XGBoost optimized with random search algorithm[J]. Journal of Safety Science and Technology,2022,18(5):129-134.
    [5] 汤国水,张宏伟,韩军,等. 基于MABC−SVM的含瓦斯煤体渗透率预测模型[J]. 中国安全生产科学技术,2015,11(2):11-16.

    TANG Guoshui,ZHANG Hongwei,HAN Jun,et al. Prediction model on permeability of gas-bearing coal based on MABC-SVM[J]. Journal of Safety Science and Technology,2015,11(2):11-16.
    [6] 谢丽蓉,路朋,范文慧,等. 基于LVQ−CPSO−BP算法的煤体瓦斯渗透率预测方法研究[J]. 采矿与安全工程学报,2017,34(2):398-404.

    XIE Lirong,LU Peng,FAN Wenhui,et al. LVQ-CPSO-BP-based prediction technique of coal gas permeability rate[J]. Journal of Mining & Safety Engineering,2017,34(2):398-404.
    [7] 高佳南,吴奉亮,马砺,等. 矿井淋水井筒风温PSO-SVR预测方法[J]. 西安科技大学学报,2022,42(3):476-483.

    GAO Jianan,WU Fengliang,MA Li,et al. PSO−SVR prediction method of airflow temperature of shaft with water dropping in mine[J]. Journal of Xi'an University of Science and Technology,2022,42(3):476-483.
    [8] 纪俊红,马铭阳,崔铁军,等. GSK−XGBoost模型在井底风温预测中的应用[J]. 中国安全生产科学技术,2022,18(3):131-136.

    JI Junhong,MA Mingyang,CUI Tiejun,et al. Application of GSK-XGBoost model in prediction of wind temperature at well bottom[J]. Journal of Safety Science and Technology,2022,18(3):131-136.
    [9] 吕品,左金宝,倪小军. 基于BP神经网络的矿井淋水井筒风温预测[J]. 煤矿安全,2008,39(12):11-13.

    LYU Pin,ZUO Jinbao,NI Xiaojun. BP neural network for predicting air temperature of watering well in mine[J]. Safety in Coal Mines,2008,39(12):11-13.
    [10] 张翔,王佰顺,徐硕,等. 基于PSO−BP的矿井淋水井筒风温预测[J]. 煤矿安全,2012,43(11):178-181.

    ZHANG Xiang,WANG Baishun,XU Shuo,et al. Prediction of airflow temperature of shafts with water dropping based on PSO−BP neural network[J]. Safety in Coal Mines,2012,43(11):178-181.
    [11] 马恒,刘亮亮. 基于T−S模糊神经网络的淋水井筒温度预测分析[J]. 世界科技研究与发展,2015,37(3):226-229.

    MA Heng,LIU Liangliang. Prediction analysis of temperature of wellbore with spay water based on T-S fuzzy neural network[J]. World Sci-tech R & D,2015,37(3):226-229.
    [12] 段艳艳. 基于支持向量机的矿井风温预测[D]. 西安:西安科技大学,2013.

    DUAN Yanyan. Prediction of the mine air temperature based on support vector machine[D]. Xi'an:Xi'an University of Science and Technology,2013.
    [13] 张群. 潘三矿热害调查及风温预测研究[D]. 淮南:安徽理工大学,2015.

    ZHANG Qun. The thermal damage investigation and wind temperature prediction research of Panji No. 3 Colliery[D]. Huainan:Anhui University of Science and Technology,2015.
    [14] 何启林,任克斌. 深井建井期入风井筒风温的预测[J]. 煤炭工程,2002,34(8):47-48. doi: 10.3969/j.issn.1671-0959.2002.08.020

    HE Qilin,REN Kebin. Prediction of air temperature in the inlet well during deep well construction period[J]. Coal Engineering,2002,34(8):47-48. doi: 10.3969/j.issn.1671-0959.2002.08.020
    [15] 顾伟红,赵雪. 基于GRA−SSA−Elman的隧道施工瓦斯安全性预测评价[J]. 自然灾害学报,2023,32(6):230-239.

    GU Weihong,ZHAO Xue. Gas safety prediction and evaluation of tunnel construction based on GRA-SSA-Elman[J]. Journal of Natural Disasters,2023,32(6):230-239.
    [16] 乔寅威,贾新春,关燕鹏,等. 基于DE−WOA的Elman神经网络的空气质量预测方法及应用 [J/OL]. 控制工程,1-8[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220929.

    QIAO Yinwei,JIA Xinchun,GUAN Yanpeng,et al. Air quality prediction method and its application of Elman neural network based on DE-WOA[J/OL]. Control Engineering of China,1-8[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220929.
    [17] 吴定会,朱勇,范俊岩,等. 基于双重注意力IJAYA−Elman的高炉煤气柜位预测[J/OL]. 控制工程,1-9[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220463.

    WU Dinghui,ZHU Yong,FAN Junyan,et al. Prediction of blast furnace gas holder lever based on double attention IJAYA-Elman[J/OL]. Control Engineering of China,1-9[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220463.
    [18] 李练兵,朱乐,李思佳,等. 基于差分电压和ICS−Elman神经网络的锂离子电池剩余使用寿命预测方法[J]. 太阳能学报,2023,44(12):433-443.

    LI Lianbing,ZHU Le,LI Sijia,et al. Remaining useful life prediction of lithium-ion batteries based on differential voltage and ICS-Elman neural networks[J]. Acta Energiae Solaris Sinica,2023,44(12):433-443.
    [19] 韩会宾. 基于目标PSO算法的工程项目优化研究[J]. 西南大学学报(自然科学版),2023,45(12):167-177.

    HAN Huibin. Research on engineering project optimization based on target PSO algorithm[J]. Journal of Southwest University(Natural Science Edition),2023,45(12):167-177.
    [20] 焦龄霄,周凯,张子熙,等. 基于mRMR−IPSO的短期负荷预测双阶段特征选择 [J/OL]. 重庆大学学报,1-13[2023-08-17]. http://kns.cnki.net/kcms/detail/50.1044.N.20231206.1636.002.html.

    JIAO Lingxiao,ZHOU Kai,ZHANG Zixi,et al. Dual-stage feature selection for short-term load forecasting based on mRMR-IPSO[J/OL]. Journal of Chongqing University,1-13[2023-08-17]. http://kns.cnki.net/kcms/detail/50.1044.N.20231206.1636.002.html.
    [21] 吴以童,李斌,刘春,等. 融合GMM和PSO的储罐超声检测机器人避障研究[J]. 计算机仿真,2023,40(11):408-414. doi: 10.3969/j.issn.1006-9348.2023.11.078

    WU Yitong,LI Bin,LIU Chun,et al. Research on obstacle avoidance of storage tank ultrasonic inspection robot integrating GMM and PSO[J]. Computer Simulation,2023,40(11):408-414. doi: 10.3969/j.issn.1006-9348.2023.11.078
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  26
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2024-01-21
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回