留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综掘工作面混合式风流调控下的粉尘沉降研究

龚晓燕 王天舒 陈龙 裴晓泽 李相斌 朱倩丽 牛虎明

龚晓燕,王天舒,陈龙,等. 综掘工作面混合式风流调控下的粉尘沉降研究[J]. 工矿自动化,2024,50(2):106-115.  doi: 10.13272/j.issn.1671-251x.2023090022
引用本文: 龚晓燕,王天舒,陈龙,等. 综掘工作面混合式风流调控下的粉尘沉降研究[J]. 工矿自动化,2024,50(2):106-115.  doi: 10.13272/j.issn.1671-251x.2023090022
GONG Xiaoyan, WANG Tianshu, CHEN Long, et al. Research on dust settlement under mixed air flow control in fully mechanized excavation face[J]. Journal of Mine Automation,2024,50(2):106-115.  doi: 10.13272/j.issn.1671-251x.2023090022
Citation: GONG Xiaoyan, WANG Tianshu, CHEN Long, et al. Research on dust settlement under mixed air flow control in fully mechanized excavation face[J]. Journal of Mine Automation,2024,50(2):106-115.  doi: 10.13272/j.issn.1671-251x.2023090022

综掘工作面混合式风流调控下的粉尘沉降研究

doi: 10.13272/j.issn.1671-251x.2023090022
基金项目: 国家自然科学基金面上资助项目(52374226);陕西省自然科学基础研究计划−企业陕煤联合基金资助项目(2021JLM-01)。
详细信息
    作者简介:

    龚晓燕(1966—),女,甘肃临洮人,教授,博士,博士研究生导师,主要研究方向为矿井智能化通风、风流调控技术及设备研发、预测预警故障诊断及智能决策支持系统研发等,E-mail:gongxymail@163.com

  • 中图分类号: TD714.4

Research on dust settlement under mixed air flow control in fully mechanized excavation face

  • 摘要: 煤矿掘进过程中粉尘聚集严重,目前针对综掘工作面混合式风流调控下粉尘沉降规律及优化的研究还不够深入。基于混合式风流调控系统,依托陕煤集团神木柠条塔矿业有限公司综掘工作面,分析了压风口距工作面距离、压风口右偏角度、压风口口径、抽风口距工作面距离和压抽比等混合式风流调控参数对粉尘沉降规律的影响:随着压风口距工作面距离增加,司机处和回风侧行人呼吸带截面大颗粒粉尘占比先增后减再增,小颗粒粉尘占比增加;随着压风口右偏角度增加,司机处和回风侧行人呼吸带截面大颗粒粉尘占比变化明显;随着压风口口径增加,司机处截面小颗粒粉尘占比先增后减再增,回风侧行人呼吸带截面大颗粒粉尘占比先增后减;随着抽风口距工作面距离增加,司机处截面大颗粒粉尘占比先增后减,小颗粒粉尘占比先增后减再增,回风侧行人呼吸带截面粉尘粒径分布变化不大;随着压抽比增大,司机处和回风侧行人呼吸带截面小颗粒粉尘占比减小。以上述风流调控各参数为自变量,回风侧行人呼吸带全尘平均浓度和司机处呼尘平均浓度最低为优化目标,建立了粉尘沉降优化回归模型,利用粒子群优化算法求解模型,得到最优风流调控方案:压风口距工作面距离为8.9 m,压风口右偏角度为14.8°,压风口口径为0.9 m,抽风口距工作面距离为4.3 m,压抽比为1.1。搭建了风流调控下粉尘沉降实验平台,实验结果表明:测试值与粉尘沉降优化回归模型的模拟值误差在13%以内,验证了模型的准确性;优化后粒径为71~100 μm的粉尘受风流调控参数影响明显,沉降在掘进机前方;优化后回风侧行人呼吸带全尘平均浓度和司机处呼尘平均浓度分别降低了47.4%和42.4%,降尘效果明显。

     

  • 图  1  混合式风流调控系统布局

    Figure  1.  Layout of hybrid air flow control system

    图  2  粉尘沉降分析有限元模型

    Figure  2.  Finite element model for dust settlement analysis

    图  3  不同网格数量下风速分布

    Figure  3.  Wind speed distribution under different grid numbers

    图  4  压风口距工作面距离变化下粉尘粒径分布

    Figure  4.  Particle size distribution of dust under the change of distance between pressure air outlet and working face

    图  5  压风口右偏角度变化下粉尘粒径分布

    Figure  5.  Particle size distribution of dust under the change of right angle of pressure air outlet

    图  6  压风口口径变化下粉尘粒径分布

    Figure  6.  Particle size distribution of dust under the change of pressure air outlet diameter

    图  7  抽风口距工作面距离变化下粉尘粒径分布

    Figure  7.  Particle size distribution of dust under the change of distance between extraction air outlet and working face

    图  8  压抽比变化下粉尘粒径分布

    Figure  8.  Particle size distribution of dust under the change of pressure-pumping ratio

    图  9  风流调控前后粉尘沉降效果对比

    Figure  9.  Comparison of dust settling effect before and after air flow control

    图  10  风流调控下粉尘沉降实验平台

    Figure  10.  Dust settling experimental platform under air flow control

    图  11  实验测点布置

    Figure  11.  Experimental measuring point arrangement

    图  12  风流调控前后粉尘粒径分布

    Figure  12.  Particle size distribution of dust before and after air flow control

    图  13  风流调控前后粉尘浓度对比

    Figure  13.  Comparison of dust concentration before and after air flow control

    表  1  边界条件

    Table  1.   Boundary condition

    参数 设定
    压风口 入口速度/(m·s−1 9.78
    入口湍流强度/% 2.97
    入口水力直径/m 1.0
    抽风口 入口速度/(m·s−1 −9.78
    入口湍流强度/% 2.97
    入口水力直径/m 1.0
    入口边界类型 Velocity-inlet
    出口边界类型 Outflow
    壁面剪切条件 No Slip
    下载: 导出CSV

    表  2  离散相参数

    Table  2.   Discrete phase parameters

    参数 设定
    相间耦合 On
    相间耦合频率/(s−1 20
    升力 On
    材质 Coal-mv
    粒径个数 10
    分布指数 1.62
    质量流率/(kg·s−1 0.004
    积分尺度 0.15
    湍流扩散模型 DRW模型
    离散相边界类型 底板trap,其余reflect
    下载: 导出CSV

    表  3  五因素水平编码

    Table  3.   Five factors horizontal coding

    Zi L1 L2 θ D B
    +γ 9.27 5.27 16.37 1.13 1.23
    +1 9.00 5.00 15.00 1.10 1.20
    0 8.00 4.00 10.00 1.00 1.10
    −1 7.00 3.00 5.00 0.90 1.00
    γ 6.73 2.73 3.64 0.87 0.97
    Δi 1.00 1.00 5.00 0.10 0.10
    下载: 导出CSV

    表  4  试验设计方案及模拟计算结果

    Table  4.   Experimental design scheme and simulation calculation results

    方案X1X2X3X4X5Y1/(mg·m−3Y2/(mg·m−3
    111111130.75483.474
    2111−1−1137.72984.821
    311−11−1153.50381.955
    411−1−11135.77380.676
    51−111−1135.55295.461
    61−11−11143.22383.555
    $ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $
    3100000114.55260.282
    3200000125.33062.133
    下载: 导出CSV

    表  5  最优风流调控方案测试值与模拟值对比

    Table  5.   Comparison of test values and simulated values of optimal air flow control scheme

    位置 模拟值/(mg·m−3 测试值/(mg·m−3 相对误差/%
    回风侧行人呼吸带 89.32 80.71 9.64
    司机处 65.08 56.96 12.47
    下载: 导出CSV
  • [1] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.

    LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14(th) Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.
    [2] 程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1-20.

    CHENG Weimin,ZHOU Gang,CHEN Lianjun,et al. Research progress and prospect of dust control theory and technology in China's coal mines in the past 20 years[J]. Coal Science and Technology,2020,48(2):1-20.
    [3] 李雨成,李智,高伦. 基于风流及粉尘分布规律的机掘工作面风筒布置[J]. 煤炭学报,2014,39(增刊1):130-135.

    LI Yucheng,LI Zhi,GAO Lun. Arrangement of air duct of tunneling working face based on the distribution laws of airflow and dust[J]. Journal of China Coal Society,2014,39(S1):130-135.
    [4] 蒋仲安,闫鹏,陈举师,等. 岩巷掘进巷道长压短抽通风系统参数优化[J]. 煤炭科学技术,2015,43(1):54-58.

    JIANG Zhong'an,YAN Peng,CHEN Jushi,et al. Optimization on parameters of long distance forced and short distance exhausted ventilation system in mine rock heading roadway[J]. Coal Science and Technology,2015,43(1):54-58.
    [5] 陈绍杰,祁银鸽,李改革. 压入式通风掘进巷道粉尘悬浮运移规律研究[J]. 煤矿安全,2022,53(4):178-182,192.

    CHEN Shaojie,QI Yinge,LI Gaige. Study on dust suspension law in driving roadway with forced ventilation[J]. Safety in Coal Mines,2022,53(4):178-182,192.
    [6] ZHANG Lichao,ZHOU Gang,MA Yu,et al. Numerical analysis on spatial distribution for concentration and particle size of particulate pollutants in dust environment at fully mechanized coal mining face[J]. Powder Technology,2021(1):143-158.
    [7] ALAM M M. An integrated approach to dust control in coal mining face areas of a continuous miner and its computational fluid dynamics modeling[D]. Carbondale:Souther Ilionis University,2006.
    [8] CANDRA K J,PULUNG S A,SADASHIV M A. Dust dispersion and management in underground mining faces[J]. International Journal of Mining Science and Technology,2014,24(1):39-44. doi: 10.1016/j.ijmst.2013.12.007
    [9] 王建国,周侗柱,戚斐文,等. 凉水井矿综采工作面粉尘运移规律数值仿真[J]. 西安科技大学学报,2020,40(2):195-203.

    WANG Jianguo,ZHOU Tongzhu,QI Feiwen,et al. Numerical simulation of dust movement rules at fully-mechanized mining faces in Liangshuijing Coal Mine[J]. Journal of Xi'an University of Science and Technology,2020,40(2):195-203.
    [10] 王晓珍,蒋仲安,王善文,等. 煤巷掘进过程中粉尘浓度分布规律的数值模拟[J]. 煤炭学报,2007,32(4):386-390. doi: 10.3321/j.issn:0253-9993.2007.04.011

    WANG Xiaozhen,JIANG Zhong'an,WANG Shanwen,et al. Numerical simulation of distribution regularities of dust concentration during the ventilation process of coal roadway driving[J]. Journal of China Coal Society,2007,32(4):386-390. doi: 10.3321/j.issn:0253-9993.2007.04.011
    [11] 秦跃平,姜振军,张苗苗,等. 综掘面粉尘运移规律模拟及实测对比[J]. 辽宁工程技术大学学报(自然科学版),2014,33(3):289-293.

    QIN Yueping, JIANG Zhenjun, ZHANG Miaomiao, et al. Comparison of simulation on dust migration regularity in fully mechanized workface[J]. Journal of Liaoning Technical University (Natural Science),2014,33(3):289-293.
    [12] WANG Zhongwei,LI Shugang,REN Ting,et al. Respirable dust pollution characteristics within an underground heading face driven with continuous miner-a CFD modelling approach[J]. Journal of Cleaner Production,2019,217:267-283. doi: 10.1016/j.jclepro.2019.01.273
    [13] 王冕. 掘进巷道流场结构及粉尘沉降规律相似模拟研究[J]. 矿业安全与环保,2021,48(3):56-61.

    WANG Mian. Similar simulation study on the flow field structure and the law of dust settlement of heading roadway[J]. Mining Safety & Environmental Protection,2021,48(3):56-61.
    [14] 龚晓燕,樊江江,刘壮壮,等. 综掘面出风口及抽风口风流综合调控下粉尘场优化分析[J]. 煤炭学报,2021,46(增刊2):800-809.

    GONG Xiaoyan,FAN Jiangjiang,LIU Zhuangzhuang,et al. Optimization analysis of dust field under comprehensive control of air outlet and exhaust air flow in fully mechanized excavation face[J]. Journal of China Coal Society,2021,46(S2):800-809.
    [15] GONG Xiaoyan,JIA Congcong,SUN Kang,et al. Distribution law and prediction model of dust concentration under airflow adjustment in fully mechanized heading face[J]. Mathematical Problems in Engineering,2019(16):1155-1172.
    [16] 龚晓燕,费颖豪,牛虎明,等. 掘进面出风口风流与风幕调控下的粉尘分布响应曲面优化研究[J]. 中国安全生产科学技术,2022,18(12):80-88.

    GONG Xiaoyan,FEI Yinghao,NIU Huming,et al. Study on response surface optimization of dust distribution under regulation of air flow and air curtain at air outlet of excavation face[J]. Journal of Safety Science and Technology,2022,18(12):80-88.
    [17] 龚晓燕,侯翼杰,赵宽,等. 综掘工作面风筒出风口风流智能调控装置研究[J]. 煤炭科学技术,2018,46(12):8-14.

    GONG Xiaoyan,HOU Yijie,ZHAO Kuan,et al. Study on intelligent control device for airflow of air duct outlet in fully-mechanized heading face[J]. Coal Science and Technology,2018,46(12):8-14.
    [18] 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京:清华大学出版社,2004.

    WANG Fujun. Computational fluid dynamics analysis - principle and application of CFD software[M]. Beijing:Tsinghua University Press,2004.
    [19] 蒋仲安,张中意,谭聪,等. 基于数值模拟的综采工作面通风除尘风速优化[J]. 煤炭科学技术,2014,42(10):75-78.

    JIANG Zhong'an,ZHANG Zhongyi,TAN Cong,et al. Optimization on air velocity for ventilation and dust control of fully-mechanized coal mining face based on numerical simulation[J]. Coal Science and Technology,2014,42(10):75-78.
    [20] 熊攀,鄢曙光. 基于Rosin-Rammler函数的数值模拟对旋风除尘器粒径分布规律的研究[J]. 粉末冶金工业,2019,29(2):29-32.

    XIONG Pan,YAN Shuguang. Numerical simulation of particle size distribution of cyclone dust collector based on Rosin-Rammler function[J]. Powder Metallurgy Industry,2019,29(2):29-32.
    [21] 笪强. 联合收割机脱粒装置分析及优化设计[D]. 西安:西安理工大学,2021.

    DA Qiang. Analysis and optimization design of threshing device for combine harvester[D]. Xi'an:Xi'an University of Technology,2021.
    [22] 龚晓燕,童丹丹,樊江江,等. 综掘面风流调控下粉尘双目标优化研究[J]. 中国安全科学学报,2022,32(4):44-50.

    GONG Xiaoyan,TONG Dandan,FAN Jiangjiang,et al. Study on dual-objective optimization of dust under airflow regulation in fully mechanized faces[J]. China Safety Science Journal,2022,32(4):44-50.
    [23] 彭娟,程健,韩仿仿,等. 基于粒子群算法的自动配煤系统多目标优化[J]. 工矿自动化,2009,35(10):25-28.

    PENG Juan,CHENG Jian,HAN Fangfang,et al. Multi-target optimization for automatic blending coal system based on PSO algorithm[J]. Industry and Mine Automation,2009,35(10):25-28.
    [24] 龚晓燕,赵少龙,刘壮壮,等. 掘进面风流监测及适应性智能调控系统研制[J]. 安全与环境学报,2023,23(2):424-434.

    GONG Xiaoyan,ZHAO Shaolong,LIU Zhuangzhuang,et al. Development of airflow monitoring and adaptive intelligent control system for heading face[J]. Journal of Safety and Environment,2023,23(2):424-434.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  40
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 修回日期:  2024-02-17
  • 网络出版日期:  2024-03-01

目录

    /

    返回文章
    返回