留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密集残差连接U型网络的噪声图像超分辨率重建

刘鹏南 李龙 张紫豪 朱星光 程德强

刘鹏南,李龙,张紫豪,等. 基于密集残差连接U型网络的噪声图像超分辨率重建[J]. 工矿自动化,2024,50(2):63-71.  doi: 10.13272/j.issn.1671-251x.2023080098
引用本文: 刘鹏南,李龙,张紫豪,等. 基于密集残差连接U型网络的噪声图像超分辨率重建[J]. 工矿自动化,2024,50(2):63-71.  doi: 10.13272/j.issn.1671-251x.2023080098
LIU Pengnan, LI Long, ZHANG Zihao, et al. Super resolution reconstruction of noisy images based on dense residual connected U-shaped networks[J]. Journal of Mine Automation,2024,50(2):63-71.  doi: 10.13272/j.issn.1671-251x.2023080098
Citation: LIU Pengnan, LI Long, ZHANG Zihao, et al. Super resolution reconstruction of noisy images based on dense residual connected U-shaped networks[J]. Journal of Mine Automation,2024,50(2):63-71.  doi: 10.13272/j.issn.1671-251x.2023080098

基于密集残差连接U型网络的噪声图像超分辨率重建

doi: 10.13272/j.issn.1671-251x.2023080098
基金项目: 国家重点研发计划项目(2021YFC2902702);济宁市重点研发计划项目(2021JNZY013)。
详细信息
    作者简介:

    刘鹏南(1985—),男,辽宁盖州人,高级工程师,硕士,主要从事智能信息处理、矿山综合自动化方面的工作,E-mail:409807974@qq.com

  • 中图分类号: TD67

Super resolution reconstruction of noisy images based on dense residual connected U-shaped networks

  • 摘要: 现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨率重建。在特征提取路径中引入基于密集残差连接的去噪模块,通过密集连接的方式对图像特征进行充分提取,再利用残差学习的特点对低分辨率噪声图像进行有效去噪;在重建路径中引入残差特征注意力蒸馏模块,通过在残差块中融入增强特征注意力块,对不同空间的特征赋予不同的权重,加强网络对于图像关键特征的提取能力,同时减少图像细节特征在残差块中的损失,从而更好地恢复图像细节信息。在煤矿井下图像数据集及公共数据集上进行了对比实验,结果表明:在客观评价指标上,所提网络的结构相似度、图像感知相似度均优于对比网络,且在复杂度及运行速度上有着较好的均衡;在主观视觉效果上,所提网络重建的图像基本消除了原有图像噪声,有效恢复了图像的细节特征。

     

  • 图  1  密集残差连接U型网络结构

    Figure  1.  Dense residual connected U-shaped network structure

    图  2  DRCDM结构

    Figure  2.  Structure of dense residual connected denoising module

    图  3  DFAB结构

    Figure  3.  Structure of densely-connected feature fusion attention block

    图  4  RFAM结构

    Figure  4.  Structure of residual feature attention distillation module

    图  5  不同网络在Noise−Urban100上的图像超分辨率重建效果对比

    Figure  5.  Comparison of image super resolution reconstruction effect of different networks on Noise-Urban100

    图  6  不同网络在Noise−B100上的图像超分辨率重建效果对比

    Figure  6.  Comparison of image super resolution reconstruction effect of different networks on Noise-B100

    图  7  不同网络在Noise−场景1上的图像超分辨率重建效果对比

    Figure  7.  Comparison of image super resolution reconstruction effect of different networks on Noise-scenario 1

    图  8  不同网络在Noise−场景2上的图像超分辨率重建效果对比

    Figure  8.  Comparison of image super resolution reconstruction effect of different networks on Noise-scenario 2

    表  1  含有不同数量RFL的网络在Noise−Set14上的LPIPS和SSIM

    Table  1.   LPIPS and SSIM of network with different numbers of residual feature fusion layer on Noise-Set14

    RFL数量 0 1 2 3 4
    LPIPS 0.585 0.528 0.492 0.470 0.461
    SSIM 0.627 0.669 0.717 0.752 0.763
    下载: 导出CSV

    表  2  含有不同数量RFL的网络在Noise−B100上的LPIPS和SSIM

    Table  2.   LPIPS and SSIM of network with different numbers of residual feature fusion layer on Noise-B100

    RFL数量 0 1 2 3 4
    LPIPS 0.632 0.598 0.563 0.532 0.525
    SSIM 0.650 0.665 0.671 0.682 0.688
    下载: 导出CSV

    表  3  消融实验结果

    Table  3.   Results of ablation experiments

    DRCDM RFAM PSNR SSIM
    × × 30.12 0.8968
    × 30.50 0.9306
    × 30.42 0.9289
    30.58 0.9315
    下载: 导出CSV

    表  4  不同网络在测试集上的LPIPS对比

    Table  4.   Comparison of LPIPS of different networks on test set

    测试集 缩放因子 LPIPS
    Bicubic ESPCN EDSR RCAN DBPN CSNLN NLSN EFDN Ours
    Noise−Set5 4 0.716 0.535 0.693 0.582 0.678 0.547 0.545 0.542 0.357
    8 0.626 0.525 0.653 0.557 0.564 0.539 0.537 0.529 0.453
    Noise−Set14 4 0.782 0.521 0.740 0.629 0.742 0.562 0.563 0.559 0.461
    8 0.692 0.603 0.708 0.623 0.672 0.579 0.577 0.575 0.540
    Noise−Urban100 4 0.894 0.671 0.715 0.681 0.707 0.677 0.675 0.672 0.492
    8 0.782 0.681 0.798 0.712 0.718 0.675 0.672 0.673 0.612
    Noise−B100 4 0.708 0.610 0.654 0.642 0.683 0.618 0.616 0.613 0.525
    8 0.810 0.723 0.795 0.776 0.788 0.721 0.719 0.717 0.685
    Noise−场景1 4 0.823 0.623 0.714 0.588 0.677 0.615 0.542 0.523 0.502
    8 0.799 0.633 0.702 0.655 0.625 0.725 0.622 0.630 0.615
    Noise−场景2 4 0.816 0.556 0.742 0.596 0.764 0.645 0.566 0.526 0.510
    8 0.795 0.645 0.756 0.637 0.755 0.655 0.678 0.636 0.622
    下载: 导出CSV

    表  5  不同网络在测试集上的SSIM对比

    Table  5.   Comparison of SSIM of different networks on test set

    测试集 缩放因子 SSIM
    Bicubic ESPCN EDSR RCAN DBPN CSNLN NLSN EFDN Ours
    Noise−Set5 4 0.599 0.697 0.602 0.675 0.608 0.692 0.695 0.697 0.736
    8 0.565 0.672 0.552 0.612 0.587 0.632 0.638 0.640 0.712
    Noise−Set14 4 0.567 0.707 0.592 0.611 0.588 0.630 0.637 0.636 0.763
    8 0.538 0.647 0.508 0.598 0.551 0.647 0.653 0.655 0.701
    Noise−Urban100 4 0.698 0.801 0.708 0.788 0.711 0.789 0.792 0.795 0.877
    8 0.531 0.710 0.605 0.658 0.649 0.718 0.719 0.721 0.785
    Noise−B100 4 0.563 0.651 0.617 0.635 0.573 0.645 0.648 0.651 0.688
    8 0.496 0.522 0.472 0.495 0.493 0.525 0.528 0.531 0.559
    Noise−场景1 4 0.814 0.789 0.846 0.855 0.823 0.845 0.865 0.845 0.878
    8 0.768 0.723 0.756 0.745 0.755 0.767 0.774 0.792 0.802
    Noise−场景2 4 0.717 0.723 0.712 0.746 0.742 0.748 0.789 0.768 0.799
    8 0.623 0.633 0.625 0.645 0.665 0.672 0.674 0.682 0.701
    下载: 导出CSV

    表  6  不同网络的复杂度和运行速度对比

    Table  6.   Comparison of complexity and running speed of different networks

    网络参数量/106每秒浮点运算次数/109每张图像耗时/msSSIM
    EDSR43.11 2121 5200.846
    RCAN16.03529600.855
    DBPN10.43257560.823
    CSNLN7.21106550.845
    NLSN6.71056020.865
    EFDN1.2874500.845
    Ours4.81014650.866
    下载: 导出CSV
  • [1] 程德强,陈杰,寇旗旗,等. 融合层次特征和注意力机制的轻量化矿井图像超分辨率重建方法[J]. 仪器仪表学报,2022,43(8):73-84.

    CHENG Deqiang,CHEN Jie,KOU Qiqi,et al. Lightweight super-resolution reconstruction method based on hierarchical features fusion and attention mechanism for mine image[J]. Chinese Journal of Scientific Instrument,2022,43(8):73-84.
    [2] ZHUANG Cheng,LI Minqi,ZHANG Kaibing,et al. Multi-level landmark-guided deep network for face super-resolution[J]. Neural Networks,2022,152:276-286. doi: 10.1016/j.neunet.2022.04.026
    [3] TAO Hongjiu,TANG Xinjian,LIU Jian,et al. Super resolution remote sensing image processing algorithm based on wavelet transform and interpolation[C]. Conference on Image Processing and Pattern Recognition in Remote Sensing,Barcelona,2003:259-263.
    [4] YANG Qi,ZHANG Yanzhu,ZHAO Tiebiao. Example-based image super-resolution via blur kernel estimation and variational reconstruction[J]. Pattern Recognition Letters,2019,117:83-89. doi: 10.1016/j.patrec.2018.12.008
    [5] KANG Xuejing,DUAN Peiqi,XU Ruyu. Single image super-resolution based on mapping-vector clustering and nonlinear pixel-reconstruction[J]. Signal Processing:Image Communication,2022,100. DOI: 10.1016/j.image.2021.116501.
    [6] 高青青,赵建伟,周正华. 基于递归多尺度卷积网络的图像超分辨率重建[J]. 模式识别与人工智能,2020,33(11):972-980.

    GAO Qingqing,ZHAO Jianwei,ZHOU Zhenghua. Image super-resolution reconstruction based on recursive multi-scale convolutional networks[J]. Pattern Recognition and Artificial Intelligence,2020,33(11):972-980.
    [7] YANG Shuyuan,LIU Zhizhou,WANG Min,et al. Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction[J]. Neurocomputing,2011,74(17):3193-3203. doi: 10.1016/j.neucom.2011.04.014
    [8] DONG Chao,LOY C C,HE Kaiming,et al. Learning a deep convolutional network for image super-resolution[C]. 13th European Conference on Computer Vision,Zurich,2014:184-199.
    [9] DONG Chao,LOY C C,TANG Xiao'ou,et al. Accelerating the super-resolution convolutional neural network[C]. 14th European Conference on Computer Vision,Amsterdam,2016:391-407.
    [10] SHI Wenzhe,CABALLERO J,HUSZAR F,et al. Real-Time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:1874-1883.
    [11] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:770-778.
    [12] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[J]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:1646-1654.
    [13] LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]. 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,Honolulu,2017:1132-1140.
    [14] SEGU M,TONIONI A,TOMBARI F. Batch normalization embeddings for deep domain generalization[J]. Pattern Recognition,2023,135. DOI: 10.1016/j.patcog.2022.109115.
    [15] ZHANG Yulun,LI Kunpeng,LI Kai,et al. Image super-resolution using very deep residual channel attention networks[C]. 15th European Conference on Computer Vision,Munich,2018:294-310.
    [16] ZHANG Yulun,TIAN Yapeng,KONG Yu,et al. Residual dense network for image super-resolution[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:2472-2481.
    [17] CHEN Liangliang,KOU Qiqi,CHENG Deqiang,et al. Content-guided deep residual network for single image super-resolution[J]. Optik,2020,202. DOI: 10.1016/j.ijleo.2019.163678.
    [18] 程德强,郭昕,陈亮亮,等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报,2021,26(3):605-618. doi: 10.11834/jig.200108

    CHENG Deqiang,GUO Xin,CHEN Liangliang,et al. Image super-resolution reconstruction from multi-channel recursive residual networks[J]. Journal of Image and Graphics,2021,26(3):605-618. doi: 10.11834/jig.200108
    [19] WOO S,PARK J,LEE J,et al. CBAM:convolutional block attention module[C]. 15th European Conference on Computer Vision,Munich,2018:3-19.
    [20] LIU Jie,TANG Jie,WU Gangshan. Residual feature distillation network for lightweight image super-resolution[C]. European Conference on Computer Vision Workshops,Glasgow,2020:41-55.
    [21] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al. Low-complexity single-Image super-resolution based on nonnegative neighbor embedding[C]. 23rd British Machine Vision Conference,Surrey,2012. DOI: 10.5244/C.26.135.
    [22] ROMANO Y,PROTTER M,ELAD M. Single image interpolation via adaptive nonlocal sparsity-based modeling[J]. IEEE Transactions on Image Processing,2014,23(7):3085-3098. doi: 10.1109/TIP.2014.2325774
    [23] LIU Yun,CHENG Mingming,HU Xiaowen,et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(8):1939-1946. doi: 10.1109/TPAMI.2018.2878849
    [24] HUANG Jiabin,SINGH A,AHUJA N. Single image super-resolution from transformed self-exemplars[C]. IEEE Conference on Computer Vision and Pattern Recognition,Boston,2015:5197-5206.
    [25] ZHANG Kai,ZUO Wangmeng,CHEN Yunjin,et al. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing,2017,26(7):3142-3155. doi: 10.1109/TIP.2017.2662206
    [26] ZHANG Kai,ZUO Wangmeng,ZHANG Lei. FFDNet:toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing,2018,27(9):4608-4622. doi: 10.1109/TIP.2018.2839891
    [27] HARIS M,SHAKHNAROVICH G,UKITA N. Deep back-projection networks for super-resolution[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:1664-1673.
    [28] MEI Yiqun,FAN Yuchen,ZHOU Yuqian,et al. Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:5689-5698.
    [29] MEI Yiqun,FAN Yuchen,ZHOU Yuqian. Image super-resolution with non-local sparse attention[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:3516-3525.
    [30] WANG Yan. Edge-enhanced feature distillation network for efficient super-resolution[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,New Orleans,2022:776-784.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  43
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2024-02-27
  • 网络出版日期:  2024-03-06

目录

    /

    返回文章
    返回