Optimization strategy for multi-level relay drainage system in mines under time of use electricity price
-
摘要: 煤矿井下排水系统的工作效率直接影响到煤矿的生产安全和经济效益。现有矿井多级接力式排水系统对于电费波峰波谷特性和《煤矿防治水细则》要求的排水系统安全约束考虑不全面,难以实现整体系统的一体化安全经济运行。针对该问题,基于避峰就谷策略和动态规划方法,提出分时电价下矿井多级接力式排水系统的优化策略。通过考虑煤矿排水系统的多级串联结构、涌水量和水泵的排水能力,建立了煤矿多级接力式排水系统的数学模型。基于避峰就谷策略,以电费成本最低为目标函数,以水仓水位、水泵排水能力、煤矿安全要求等为约束条件,构建基于分时电价的多级接力式排水系统优化问题,并给出了基于动态规划方法的求解算法。以某矿井4级排水系统为例进行仿真分析,结果表明,该策略可有效控制井下水位,保证水位处于合理高度:当电价较高时,水泵开启的数量很少或为零,水仓处于高水位状态;当电价较低时,水泵开启的数量较多,水仓处于低水位状态。该策略能够在提升经济效益的同时,保障煤矿的生产效率和生产安全。Abstract: The efficiency of the underground drainage system in coal mines directly affects the production safety and economic benefits of coal mines. The existing multi-level relay drainage system in mines does not fully consider the peak and valley features of electricity bills and the safety constraints of the drainage system required by the Coal Mine Water Prevention and Control Regulations. It is difficult to achieve integrated safe and economic operation of the entire system. In order to solve the above problems, based on the avoiding peaks and filling valley strategy and dynamic programming method, an optimization strategy for multi-level relay drainage system in mines under the time of use electricity price is proposed. By considering the multi-level series structure, water inflow, and drainage capacity of water pumps, a mathematical model of a multi-level relay drainage system in coal mines is established. Based on the strategy of avoiding peaks and filling valleys, with the lowest electricity cost as the objective function and constraints such as water level in water tanks, drainage capacity of water pumps, and coal mine safety requirements, a multi-level relay drainage system optimization problem based on time of use electricity price is constructed. The solution algorithm based on dynamic programming method is provided. Taking the 4-level drainage system of a certain mine as an example for simulation analysis, the results show that this strategy can effectively control the underground water level and ensure that the water level is at a reasonable height. When the electricity price is high, the number of drainage pumps opened is very small or zero, and the water tank is in a high water level state. When the electricity price is low, the number of drainage pumps opened is larger, and the water tank is in a low water level state. This strategy can improve economic benefits while ensuring the production efficiency and safety of coal mines.
-
0. 引言
煤矿井下排水系统是煤矿安全生产的重要保证,排水系统的工作效率直接影响到煤矿的生产安全和经济效益[1-2]。传统的矿井排水系统控制方式对工人的经验水平要求较高,且需要大量人力资源进行日常检查[3]。随着矿井深度加大,排水功率增加,排水系统长期持续运转,造成能耗居高不下,效率降低,设备使用周期缩短[4]。因此,煤矿井下排水系统的智能化、节能化升级改造显得尤为重要。
煤矿井下排水系统的研究主要包括2个方面:一方面是根据《煤矿防治水规定》和《煤矿安全规程》,对照煤矿的水文地质条件(例如涌水量),研究并设计排水方式和排水泵房等[5-6];另一方面是利用信息技术研究井下排水系统的安全监控和智能优化技术[7-10]。随着PLC控制技术和物联网技术的推广应用,煤矿井下排水系统的自动化水平得到很大提升,实现了对排水系统运行数据的实时监控,提高了煤矿排水系统的安全性[11-14]。由于煤矿井下排水系统能耗很大,其节能降耗问题引起了广泛关注[15-16],许多学者利用模型预测和模糊控制等优化控制方法对排水系统进行优化[17-19],对于节省煤矿生产成本和提高安全性发挥了重要作用。
开采条件复杂、规模较大的煤矿一般采用多级接力式排水系统,需要多级水泵协同联动控制[20-22]。与单级排水系统相比,多级接力式排水系统各级水泵耦合,给系统的优化控制带来挑战,现有方法主要采用分层优化控制和解耦控制[23-24]。多级接力式排水系统的能耗优化问题由来已久,传统的做法是在系统工程的框架下,通过建立多级排水系统的数学模型,使用分级动态规划算法求解对应的优化问题,实现排水系统能耗优化[25-26]。近年来,排水系统能耗优化策略主要采用避峰填谷优化策略,节省煤矿运行成本[27-28]。但现有策略尚存在2个方面的不足:一是对于电费波峰波谷特性和《煤矿防治水细则》要求的排水系统安全约束考虑不全面;二是主要采用分层或解耦的优化策略,难以实现整体系统的一体化安全经济运行[29-31]。
针对上述问题,本文研究了分时电价下矿井多级接力式排水系统的优化策略。首先,分析煤矿多级接力式排水系统的运行过程,建立水仓水位数学模型、水泵能耗数学模型和分时电价数学模型。然后,利用水泵能耗数学模型和分时电价数学模型,设计电费成本函数,以电费成本最低为优化目标函数,根据《煤矿防治水细则》设计安全约束条件,建立基于分时电价的多级接力式排水系统优化模型。最后,构建分时电价下矿井多级接力式排水系统的优化问题规范型,基于动态规划框架求解该优化问题,确定最优控制策略,使排水泵站运行在最佳工作状态,实现多级接力式排水系统运行优化。
1. 矿井多级接力式排水系统建模
矿井多级接力式排水系统由多台排水泵和多个水仓构成,如图1所示。排水系统越靠近井口,其排水压力越大,最后一级的排水压力最大,直接将水排到地面。每一级有1个水仓和多台排水泵共同工作。
1.1 矿井多级接力式排水系统数学模型
设井下第i级泵房有$ {n_i} $台水泵,每台水泵可独立控制开关,井下水仓水位最高允许上升至$ {H_{i{\mathrm{h}}}} $,当矿井水位下降到$ {H_{i{\mathrm{l}}}} $以下时水泵停止工作。将每个排水周期分为$ T $个时间段,每段时间内泵站运行情况相同。设当前水位为$ {H_i} $,第$ k $$ \left(k \in \left[ {0,\;T - 1} \right]\right) $时段水仓水位为$ {H_i}(k) $,则有
$$ {H_{i{\mathrm{l}}}} \leqslant {H_i}(k) \leqslant {H_{i{\mathrm{h}}}} $$ (1) 矿井水仓一般为圆柱体或环形体,定义$ S_{ i} $为水仓截面积,$ {q_i}(k) $为平均涌水量,在$ k $时段水泵的运行状态为$ u_i^{{n_i}}\left( k \right) \in \left\{ {0,1} \right\} $(0表示关闭水泵,1表示打开水泵),则第i级泵房的水泵控制决策向量为
$$ {{\boldsymbol{U}}_i}(k) = \left[ {u_i^1(k)\;\; u_i^2(k)\;\; \cdots \;\; u_i^{{n_i}}(k)} \right] $$ (2) 第i级泵房中各水泵的排水能力用向量表示为
$$ {{\boldsymbol{\varGamma}} _i} = \left[ {\gamma _i^1\;\; \gamma _i^2\;\; \cdots \;\; \gamma _i^{{n_i}}} \right] $$ (3) 式中$ \gamma _i^1,\gamma _i^2, \cdots ,\gamma _i^{{n_i}} $为第i级泵房中各水泵的排水量。
单位时间内第i级泵房中水泵的耗电量为
$$ {{\boldsymbol{\varTheta}}_i} = \left[ {\theta _i^1\;\;\theta _i^2\;\; \cdots \;\;\theta _i^{{n_i}}} \right] $$ (4) 式中$ \theta _i^1,\theta _i^2, \cdots ,\theta _i^{{n_i}} $为第i级泵房中各水泵的耗电量。
根据避峰填谷的原则,在电价低时,使用多台排水泵进行排水;在电价高时,减少排水泵的使用,利用水仓进行存水。这种做法可避免在高电价时浪费电费,同时也可通过适当的存水来避免排水泵频繁启停,从而降低排水泵的损耗。这种排水模式既可节省大量电费,又可保护排水泵的运行,达到了节能降耗的目的。分时电价数学模型为
$$ c(k) = \left\{ \begin{gathered} {c_0}\quad t \in [0,9) \\ {c_1}\quad t \in [12,19) \cup [22,24) \\ {c_2}\quad t \in [9,12) \cup [19,22) \\ \end{gathered} \right. $$ (5) 式中:c0−c2为不同时段的电价,其中$ {c_1} $为基础电价,0.7 元/kWh,$ {c_0} = 0.5{c_1} $,$ {c_2} = 1.58{c_1} $;t为时刻。
分时电价分布如图2所示。
1.2 矿井多级接力式排水系统优化模型
以24 h内电费成本最低为目标函数,记为$ J $,可得
$$ J = \sum\limits_{k = 0}^{T - 1} {c(k)\left( {\sum\limits_{i=1}^{n_i} {{{\boldsymbol{U}}_i}(k)\mathop {\boldsymbol{\varTheta}} \nolimits_i^{\mathrm{T}} } } \right)} = \sum\limits_{k = 0}^{T - 1} {\sum\limits_{i = 1}^{n_i} {c(k){{\boldsymbol{U}}_i}(k)\mathop {\boldsymbol{\varTheta}} \nolimits_i^{\mathrm{T}}} } $$ (6) 水仓水位$ {H_i}(k) $可表示为
$$ {H_i}(k) = {l_i} + \frac{{{q_i}(k)}}{{{S_i}}} - \frac{1}{{{S_i}}}\left[ {\gamma _i^1\;\;\gamma _i^2\;\; \cdots \;\;\gamma _i^{{n_i}}} \right] \left[ \begin{gathered} u_i^1(k) \\ u_n^2(k) \\ \vdots \\ u_i^{{n_i}}(k) \\ \end{gathered} \right] $$ (7) 式中$ {l_i} $为第i级泵房中水仓的初始水位。
综上可得系统动态模型:
$$ {H_i}(k + 1) = {H_i}(k) + \left[ {\frac{1}{K}\;\; - \frac{{\gamma _i^1}}{K}\;\; - \frac{{\gamma _i^2}}{K}\;\; \cdots \;\; - \frac{{\gamma _i^{{n_i}}}}{K}} \right]\left[ \begin{gathered} {q_i}(k) \\ u_i^1(k) \\ u_i^2(k) \\ \vdots \\ u_i^{{n_i}}(k) \\ \end{gathered} \right] $$ (8) 式中$ K $为正的常数,表示涌水量跟水位的线性关系。
令$ x_i(k) = S_i {H_i}(k) $,则系统的状态方程为
$$ {x_i}(k + 1) = {x_i}(k) - {{\boldsymbol{\varGamma}} _i}{{\boldsymbol{U}}_i}(k) + {q_i}(k) $$ (9) 水仓水量约束条件为
$$ {S_{ i}}{H_{i{\mathrm{l}}}} \leqslant {x_i}(k) \leqslant {S_{ i}}{H_{i{\mathrm{h}}}} $$ (10) 《煤矿防治水细则》中对排水系统的设计有非常科学严格的要求,对正常、应急、抢险等工况下,工作、备用、检修3类水泵的工作能力和配置都给出了定量标准。本文研究正常工况下多级接力式排水系统的节能优化问题。根据《煤矿防治水细则》,工作水泵应该确保能在20 h内排出24 h的正常涌水量,所以,应该满足如下安全约束:
$$ {q_i}(k) \leqslant \frac{5}{6}\left[ {\gamma _i^1\;\;\gamma _i^2\;\; \cdots \;\; \gamma _i^{{n_i}}} \right] \left[ \begin{gathered} u_i^1(k) \\ u_i^2(k) \\ \vdots \\ u_i^{{n_i}}(k) \\ \end{gathered} \right] $$ (11) 2. 优化问题规范型
水仓通常比较大,可存储大量水,起到井下排水的缓冲作用。分时电价策略的核心思想是根据电价变化来调整能源的使用,以达到节能和降低能源成本的目的。分时电价将一天以小时为单位分为峰、谷、平3个时段,不同时段的电价不同,其中峰时电价最高,谷时电价最低,平时电价居中。在这种情况下,可利用水仓的容量,在电价低时开启多台排水泵,尽快将水仓的水排送出去;而在电价高时,则减少排水泵的使用,利用水仓的容量进行存水,等待电价低时再进行排送。通过这种管理方式,实现多级接力式排水系统的节能高效运行。
将一天以小时为单位分为24个时段,对应不同的分时电价,建立优化问题。再利用动态规划方法求解优化问题,得到最优排水方案,从而实现最大程度的节能,降低能源成本。综合式(1)−式(11),得到优化问题规范型:
$$ \left\{\begin{gathered} J = \min \sum\limits_{k = 0}^{T - 1} {c(k)\left( {\sum\limits_{i=1}^{n_i} {{{\boldsymbol{U}}_i}(k)\mathop {\boldsymbol{\varTheta}} \nolimits_i^{\mathrm{T}}} } \right)} \\ {x_1}(k + 1) = {x_1}(k) + {q_1}(k) - {{{\boldsymbol{\varGamma}}} _1}{\boldsymbol{\varTheta}} _1^{\mathrm{T}} + {{\boldsymbol{\varGamma}} _0}{\boldsymbol{\varTheta}} _0^{\mathrm{T}} \\ {S_{ 1}}{H_{1{\mathrm{l}}}} \leqslant {x_1}(k) \leqslant {S_{ 1}}{H_{1{\mathrm{h}}}} \\ {x_i}(k + 1) = {x_i}(k) + {q_i}(k) - {{\boldsymbol{\varGamma}} _i}{\boldsymbol{\varTheta}} _i^{\mathrm{T}} + {{\boldsymbol{\varGamma}} _{i - 1}}{\boldsymbol{\varTheta}} _{i - 1}^{\mathrm{T}} \\ {S_{ i}}{H_{i{\mathrm{l}}}} \leqslant {x_i}(k) \leqslant {S_{ i}}{H_{i{\mathrm{h}}}} \\ {x_{n_i}}(k + 1) = {x_{n_i}}(k) + {q_{n_i}}(k) - {{\boldsymbol{\varGamma}} _{n_i}}{\boldsymbol{\varTheta}} _{n_i}^{\mathrm{T}} + {{\boldsymbol{\varGamma}} _{{n_i} - 1}}{\boldsymbol{\varTheta}} _{{n_i} - 1}^{\mathrm{T}} \\ {S_{{ n_i}}}{H_{{n_i}{\mathrm{l}}}} \leqslant {x_{n_i}}(k) \leqslant {S_{ n_i}}{H_{{n_i}{\mathrm{h}}}} \\ {q_i}(k) \leqslant \frac{5}{6}{{\boldsymbol{\varGamma}} _i}(k)\mathop {\boldsymbol{U}}\nolimits_i^{\mathrm{T}} (k) \\ {{\boldsymbol{U}}_i}(k) = \left[ u_i^1(k)\;\; u_i^2(k)\;\; \cdots \;\; u_i^{{n_i}}(k)\right] \\ {{\boldsymbol{\varGamma}} _i}(k) = \left[ \gamma _i^1(k)\;\;\gamma _i^2(k)\;\; \cdots \;\; \gamma _i^{{n_i}}(k)\right] \\ {{\boldsymbol{\varTheta}} _i}(k) = \left[ \theta _i^1(k)\;\;\theta _i^2(k)\;\;\cdots\;\;\theta _i^{{n_i}}(k)\right] \\ \end{gathered}\right. $$ (12) 利用动态规划方法求解式(12),可得分时电价下矿井多级接力式排水系统的优化策略。与现有策略相比,本文策略更全面、更精细。
3. 仿真验证
以某矿井的排水系统为例,验证所提优化策略的正确性和优越性。某矿井共5级排水,其中,每级排水各有5台排水流量为500 m3/h的水泵。水仓容积为2 710 m3,水仓截面积为27.1 m2,水仓水位的上限为90 m,下限为10 m。涌水量为380 m3/h。
第1−4级排水系统的水泵启用台数如图3所示。可看出,在电价较低时,水泵开启的数量较多,将存储的水排送出去;当电价较高时,水泵开启的数量很少或为零,有效降低用电成本。
第1−4级排水系统的水仓水位如图4所示。可看出水仓水位始终没有超过容量上限,说明所提控制策略可有效控制井下水位,保障煤矿排水安全。
4. 结语
通过分析单级排水系统和多级排水系统的研究现状,指出现有优化策略的不足之处,提出了基于避峰就谷策略和动态规划方法的煤矿多级接力式排水系统优化策略。该策略以电费成本为目标函数,以排水泵排水能力、水仓水位和《煤矿防治水细则》规定的要求为约束条件,建立优化问题,使用动态规划方法进行求解。最后通过某矿井的排水系统验证了所提优化策略的有效性。
-
[1] 丁震,李浩荡,张庆华. 煤矿灾害智能预警架构及关键技术研究[J]. 工矿自动化,2023,49(4):15-22. DING Zhen,LI Haodang,ZHANG Qinghua. Research on intelligent hazard early warning architecture and key technologies for coal mine[J]. Journal of Mine Automation,2023,49(4):15-22.
[2] 郭文强. 高压水泵在煤矿井下排水中的应用实践研究[J]. 矿业装备,2023(2):134-136. GUO Wenqiang. Research on the application practice of high pressure water pump in underground drainage of coal mine[J]. Mining Equipment,2023(2):134-136.
[3] 金书奎,寇子明,吴娟. 煤矿水泵房巡检机器人路径规划与跟踪算法的研究[J]. 煤炭科学技术,2022,50(5):253-262. JIN Shukui,KOU Ziming,WU Juan. Research on path planning and tracking algorithm of inspection robot in coal mine water[J]. Coal Science and Technology,2022,50(5):253-262.
[4] 杨鹏里,郭刚,谢晓东. 基于PLC的煤矿井下自动控制排水系统设计[J]. 电工技术,2022(20):4-6. YANG Pengli,GUO Gang,XIE Xiaodong. Design of automatic drainage system in coal mine based on PLC[J]. Electric Engineering,2022(20):4-6.
[5] 盛超,张鸥,许德新. 冲击地压条件下矿井疏排水系统设计[J]. 煤矿安全,2018,49(9):171-174. SHENG Chao,ZHANG Ou,XU Dexin. Design of mine drainage system under condition of rock burst[J]. Safety in Coal Mines,2018,49(9):171-174.
[6] 熊小艳. 改扩建矿井排水系统改造设计[J]. 煤矿机械,2018,39(6):103-104. XIONG Xiaoyan. Retrofit design on reconstruction and expansion drainage system of coal mine[J]. Coal Mine Machinery,2018,39(6):103-104.
[7] 高之翔,李敬兆,杨大禹,等. 基于S3C2440下位机的矿井排水系统设计[J]. 煤炭技术,2016,35(7):165-168. GAO Zhixiang,LI Jingzhao,YANG Dayu,et al. Design of mine drainage system based on lower computer S3C2440[J]. Coal Technology,2016,35(7):165-168.
[8] 史晓娟,齐彪,张修德. 基于DSP的矿井排水系统控制策略研究[J]. 煤矿机械,2020,41(6):41-44. SHI Xiaojuan,QI Biao,ZHANG Xiude. Research on control strategy of mine drainage system based on DSP[J]. Coal Mine Machinery,2020,41(6):41-44.
[9] 谢岩彬. 基于PLC的煤矿主排水泵自动控制系统设计[J]. 山东煤炭科技,2021,39(11):146-148. XIE Yanbin. Design of automatic control system of coal mine main drainage pump based on PLC[J]. Shandong Coal Science and Technology,2021,39(11):146-148.
[10] 王中亮,刘海泉,王振虹. 李楼煤矿矿井抗灾排水系统设计优化[J]. 煤炭工程,2022,54(4):7-11. WANG Zhongliang,LIU Haiquan,WANG Zhenhong. Optimization of mine disaster-resistant drainage system design of Lilou Coal Mine[J]. Coal Engineering,2022,54(4):7-11.
[11] 章盼梅. 基于物联网的矿井排水自控系统升级改造[J]. 仪表技术与传感器,2023(2):50-53. ZHANG Panmei. Upgrade and transformation of mine drainage automatic control system based on Internet of things[J]. Instrument Technique and Sensor,2023(2):50-53.
[12] 刘迪,喻振杰,曾尚琦,等. 基于iFix的矿井排水集控系统设计与应用[J]. 煤炭工程,2019,51(11):14-17. LIU Di,YU Zhenjie,ZENG Shangqi,et al. Design and implementation of a mine drainage centralized control system based on iFix[J]. Coal Engineering,2019,51(11):14-17.
[13] 姚伟. 智能高效矿井排水监控系统的研究[J]. 煤炭技术,2019,38(4):112-114. YAO Wei. Research on intelligent and efficient coal mine drainage monitoring system[J]. Coal Technology,2019,38(4):112-114.
[14] 刘军锋,田卫东. 寺河矿主排水集控系统研究[J]. 煤炭技术,2020,39(11):124-128. LIU Junfeng,TIAN Weidong. Study on centralized control system of main drainage equipment in Sihe Coal Mine[J]. Coal Technology,2020,39(11):124-128.
[15] 王荣,王新园. 矿井排水节能环保研究[J]. 煤炭工程,2019,51(1):23-27. WANG Rong,WANG Xinyuan. Research on energy saving and environmental protection of mine drainage[J]. Coal Engineering,2019,51(1):23-27.
[16] 范子荣. 矿井排水自动控制系统的设计[J]. 工业安全与环保,2017,43(7):38-40. FAN Zirong. Design of the mine drainage automatic control system[J]. Industrial Safety and Environmental Protection,2017,43(7):38-40.
[17] 任志玲,韩佳昊. 基于MPC的煤矿井下排水系统节能控制策略研究[J]. 系统仿真学报,2015,27(12):3032-3036,3043. REN Zhiling,HAN Jiahao. Energy saving control research on mine drainage system based on model predictive control[J]. Journal of System Simulation,2015,27(12):3032-3036,3043.
[18] 寇彦飞,杨洁明,寇子明. 基于安全节能的矿井自动化排水控制系统设计[J]. 煤炭工程,2016,48(1):31-34. KOU Yanfei,YANG Jieming,KOU Ziming. Design of mine automatic drainage control system based on safety and energy saving[J]. Coal Engineering,2016,48(1):31-34.
[19] 宋绍楼,姚净千. 基于模糊控制的矿井排水控制系统优化研究[J]. 控制工程,2017,24(10):2022-2026. SONG Shaolou,YAO Jingqian. Study on energy-saving control of mine drainage system[J]. Control Engineering of China,2017,24(10):2022-2026.
[20] 张锋. 多级水泵房自动化排水控制系统设计[J]. 工矿自动化,2014,40(12):108-110. ZHANG Feng. Design of automatic drainage control system of multistage pumping stations[J]. Industry and Mine Automation,2014,40(12):108-110.
[21] 吴文臻. 矿用多水平智能排水系统的应用研究[J]. 煤矿机械,2022,43(10):166-168. WU Wenzhen. Application research of mine multi-level intelligent drainage system[J]. Coal Mine Machinery,2022,43(10):166-168.
[22] 朱元. 矿井主排水系统扩容设计[J]. 陕西煤炭,2022,41(3):156-159. ZHU Yuan. Capacity expansion design of mine drainage system[J]. Shaanxi Coal,2022,41(3):156-159.
[23] 张建锋. 矿井多水平排水智能化联动装置的设计[J]. 自动化应用,2022,63(4):95-97. ZHANG Jianfeng. Design of intelligent linkage device for multi-level drainage of mine[J]. Automation Application,2022,63(4):95-97.
[24] 宋国栋. 多水平多泵组协同控制的耦合分析及解耦控制策略的研究[J]. 煤炭技术,2022,41(8):107-110. SONG Guodong. Coupling analysis of multi-level and multi pump unit cooperative control and study of decoupling control strategy[J]. Coal Technology,2022,41(8):107-110.
[25] 魏亚平,辉宝琨. 某煤矿多级排水系统运行组织的综合优化[J]. 系统工程理论与实践,1988,8(3):28-37. WEI Yaping,HUI Baokun. Comprehensive optimization of operation organization of multi-stage drainage system in a coal mine[J]. Systems Engineering-theory & Practice,1988,8(3):28-37.
[26] 王再英. 多级排水系统最优控制模型及分级DP算法[J]. 西安矿业学院学报,1997,17(2):80-83,88. WANG Zaiying. Optimal control model of multiple-stage dewatering system and stepping dynamic programming algorithm[J]. Journal of Xi'an Institute of Mining and Technology,1997,17(2):80-83,88.
[27] 陈其晖. 煤矿多级接力排水系统自动化协同控制[J]. 采矿技术,2021,21(增刊1):161-163. CHEN Qihui. Automatic collaborative control of multi-stage relay drainage system in coal mine[J]. Mining Technology,2021,21(S1):161-163.
[28] 李进虎,陈明明. 煤矿井下接力水仓自动化控制系统研究与应用[J]. 煤矿机械,2022,43(4):178-180. LI Jinhu,CHEN Mingming. Research and application of automation control system of relay water warehouse in coal mine[J]. Coal Mine Machinery,2022,43(4):178-180.
[29] 叶源涛. 基于组态和PLC的矿用排水控制系统设计[D]. 淮南:安徽理工大学,2021. YE Yuantao. Design of mine drainage control system based on configuration and PLC[D]. Huainan:Anhui University of Science & Technology,2021.
[30] 李哲. 矿井多水平协同排水智能控制系统研究与设计[D]. 徐州:中国矿业大学,2020. LI Zhe. Study and design on the intelligent control system of multilevel cooperative drainage in mine[D]. Xuzhou:China University of Mining and Technology,2020.
[31] 李明生,石静. 煤矿多水平排水智能控制系统的设计与研究[J]. 冶金管理,2023(2):109-112. LI Mingsheng,SHI Jing. Design and research of coal mine multi-level drainage intelligent control system[J]. China Steel Focus,2023(2):109-112.
-
期刊类型引用(1)
1. 范国涛,赵林. 可持续发展理念下的商业综合体给排水系统优化策略. 中国建筑金属结构. 2025(01): 170-172 . 百度学术
其他类型引用(1)