基于GJO−MLP的露天矿边坡变形预测模型

Prediction model of slope deformation in open pit mines based on GJO-MLP

  • 摘要: 露天矿边坡变形受地质结构、水文地质条件、采矿活动等多种因素影响,使得预测模型复杂,难以准确捕捉所有影响因素。目前,大量监测设备部署在露天矿边坡周围,用于实时记录露天矿边坡位移数据,这些数据具有高维度、时序关联性及非线性等特性。如果在其他条件未知而只有数据的情况下,使用传统的边坡稳定性分析方法无法有效进行边坡变形预测,而采用仅基于数据的模型对露天矿边坡位移数据进行预测对边坡稳定性的事前分析十分必要。针对上述问题,提出了一种基于金豺优化多层感知机(GJO−MLP)的露天矿边坡变形预测模型。GJO中各智能体间相互独立,可以通过并行计算加速优化MLP的训练过程;GJO能够结合MLP的非线性建模和特征提取能力,使得优化后的MLP在处理复杂问题时更具优势。为检验GJO−MLP的可行性和有效性,将GJO−MLP分别与基于蚁群算法优化的MLP(ACO−MLP)、基于引力搜索算法优化的MLP(GSA−MLP)及基于差分进化算法优化的MLP(DE−MLP)进行对比分析,在6个数据集上的仿真实验结果表明:在相同实验条件下,相较于其他3种算法,GJO−MLP表现出更好的寻优性能。将基于GJO−MLP的边坡变形预测模型应用于宝日希勒露天矿边坡变形预测和花坪子边坡变形预测中,结果表明:在相同条件下,相较于其他3种算法,基于GJO−MLP的边坡变形预测模型在对边坡变形数据进行预测时不仅表现出更好的预测求解性能,而且还具有更好的可行性和鲁棒性。

     

    Abstract: The deformation of open-pit mine slopes is influenced by various factors such as geological structure, hydrogeological conditions, mining activities, etc., making the prediction model complex. It is difficult to accurately capture all influencing factors. At present, a large number of monitoring devices are deployed around the slope of open-pit mines to record real-time displacement data of open-pit mine slopes. The data has the features of high-dimensional, temporal correlation, and nonlinear. Traditional slope stability analysis methods cannot effectively predict slope deformation without knowing other conditions and only data, it is necessary to use a data-based model to predict the displacement data of open-pit mine slopes in advance for slope stability analysis. In order to solve the above problems, a deformation prediction model for open-pit mine slopes based on the golden jackal optimized multilayer perception machine (GJO-MLP) is proposed. Each agent in GJO is independent of each other and can accelerate the training process of optimizing MLP through parallel computing. GJO can combine the nonlinear modeling and feature extraction capabilities of MLP, making the optimized MLP more advantageous in dealing with complex problems. To test the feasibility and effectiveness of GJO-MLP, GJO-MLP is compared and analyzed with ant colony algorithm optimization based MLP (ACO-MLP), gravity search algorithm optimization based MLP (GSA-MLP), and differential evolution algorithm optimization based MLP (DE-MLP). The simulation results on six datasets show that under the same experimental conditions, GJO-MLP shows better optimization performance compared to the other three algorithms. The slope deformation prediction model based on GJO-MLP is applied to the slope deformation prediction of Baorixile open-pit mine and Huapingzi slope deformation prediction. The results show that under the same conditions, compared to the other three algorithms, the slope deformation prediction model based on GJO-MLP not only show better predictive performance in predicting slope deformation data, but also has better feasibility and robustness.

     

/

返回文章
返回