Automatic height adjustment technology of shearer based on cutting roof and floor height prediction model
-
摘要: 传统的煤层截割路径规划通过几何控制、规划计算等方式对采煤机滚筒高度进行预测,但存在预测的数据误差较大、无法适应地质条件变化的问题。针对上述问题,提出了一种基于截割顶底板高度预测模型的采煤机自动调高技术。首先,分析了影响截割顶底板高度的因素,指出影响顶底板高度的主要因素包括煤层的起伏变化数据、历史截割数据、刮板输送机的高程数据及人工操作记录,将上述4类数据融合处理,建立以长短期记忆(LSTM)模型和灰色马尔可夫模型为基础的截割顶底板高度预测模型,通过算法模型预测出截割顶底板的高度。然后,以截割顶底板的高度数据为基础,结合采煤机位姿和空间坐标,建立计算滚筒高度的几何模型,同时依据刮板输送机上窜下滑量及是否执行加减刀工艺等因素进行修正,最终将顶底板高度序列转换为滚筒高度序列,即将截割顶底板高度转换为采煤机滚筒的目标高度,由采煤机执行到目标高度,实现滚筒自动调高工业性试验结果表明:① 在自动调高技术的控制下,顶滚筒和底滚筒的预测高度与实际高度偏差值有90%的数据量均在10 cm以内,滚筒的预测高度和实际高度具有明显的一致性。② 与传统手动控制方式相比,中部截割一刀煤的人工干预调高次数由49次下降为21次,说明截割顶底板的高度预测模型和计算滚筒高度的几何模型是准确合理的,采煤机滚筒的自动调高技术是可行的。Abstract: The traditional coal seam cutting path planning predicts the height of the drum through geometric control, planning calculation, and other methods. But there are problems with large data errors in planning and prediction and inability to adapt to changes in geological conditions. In order to solve the above problems, a shearer automatic height adjustment technology based on a cutting roof and floor height prediction model is proposed. Firstly, the factors affecting the height of the cutting roof and floor are analyzed. It is pointed out that the main factors affecting the height of the cutting roof and floor include the fluctuation data of the coal seam, historical cutting data, elevation data of the scraper conveyor, and manual operation records. The above four types of data are fused and processed to establish a cutting roof and floor height prediction algorithm model based on long short term memory (LSTM) model and gray Markov model. The height of the cutting roof and floor is predicted through an algorithmic model. Secondly, based on the height data of the cutting roof and floor, combined with the position and posture and spatial coordinates of the shearer, a geometric model for calculating the height of the drum is established. At the same time, correction is made according to factors such as the sliding amount of the scraper conveyor and whether the addition and subtraction process is carried out. Finally, the height sequence of the roof and floor is converted into a drum height sequence. The cutting roof and floor height is converted into the target height of the shearer drum, which is executed by the shearer to the target height, achieving automatic adjustment of the drum height. The industrial test results show the following points. ① Under the control of automatic height adjustment technology, 90% of the predicted height deviation values of the roof and floor drums are within 10 cm of the actual height. The predicted height of the drums is significantly consistent with the actual height. ② Compared with traditional manual control methods, the number of manual intervention height adjustment times for cutting coal in the middle has decreased from 49 to 21. It indicates that the height prediction model for cutting the roof and floor and the geometric model for calculating the height of the drum are accurate and reasonable, and the automatic height adjustment technology for the shearer drum is feasible.
-
0. 引言
煤炭作为我国的主体能源,对国民经济的发展具有重要意义[1-2]。矿井火灾是煤矿开采过程中常见的一种灾害,长期制约着我国煤炭行业的发展。我国煤炭资源分布呈现“北富南贫,西多东少”的状况,内因火灾呈现北多南少的趋势,而引起外因火灾的因素较多,如煤矿日常管理疏忽等[3]。矿井火灾不仅会造成巨大经济损失,还会产生大量有毒有害气体,严重威胁煤炭开采作业人员的生命安全[4]。国家发展改革委、国家能源局等八部委于2020年联合印发了《关于加快煤矿智能化发展的指导意见》[5],国家能源局、国家矿山安全监察局于2021年制定了《煤矿智能化建设指南(2021年版)》[6],均指出了煤矿智能化建设方针,其中,煤矿火灾防治技术应逐渐朝“智能监测、精准预警、科学防治”的方向发展[7]。
随着我国煤矿智能化建设的不断推进,矿井火灾预警与防控体系也越来越完善。在煤矿智能化建设大背景下,学者们针对矿井火灾预警系统开展了一些研究工作。文献[8-9]对基于大数据、物联网、神经网络的火灾智能监测预警系统进行了深入探讨;文献[10]对基于气体和温度相结合的煤自燃预警及响应机制进行了研究,并研发了煤自燃远程监测与预警系统。文献[11]提出了基于“云−边−端”协同的煤矿火灾智能化防控体系。此外,专家学者对煤矿火灾监测指标及预警模型[12-14]、监测预警技术与装备[15-16]及现场应用效果[17-19]等进行了不同程度的分析研究,并对智能化发展进行了展望。目前国内的煤矿火灾监测系统功能不统一,实现了对矿井煤自燃标志性气体、温度、烟雾、火焰等部分指标的单独监测,未能对煤矿火灾相关因素进行有效、全面、统一的监测。针对该问题,笔者对煤矿火灾危险因素、分源分区监测指标体系、系统框架设计及智能预警关键技术进行了探索。基于多指标关联分析、D−S证据理论数据分析方法,研究建立煤矿火灾多指标融合决策机制,在预警系统总体架构基础上开发了煤矿火灾智能预警系统,初步实现了煤矿火灾多因素、多指标融合预警;基于GIS技术,初步实现了矿井火灾风险预警“一张图”的可视化展示,为煤矿火灾防治决策提供了有效的技术支撑。
1. 煤矿火灾危险性分析
根据引火的热源不同,通常将矿井火灾分为内因火灾和外因火灾两大类。
1.1 内因火灾危险性分析
依据煤氧复合作用学说,煤在常温下与氧气结合,发生复杂的物理化学反应,使煤的组成物质氧化,从而产生热量并积蓄,当氧化产生的热量不能及时散发时就导致煤自燃。煤自燃必须具备以下条件:煤具有自燃倾向特性且以破碎状态集中堆积存放;连续的供氧条件;积聚氧化热的环境;维持煤的氧化过程不断发展的时间。
煤自燃危险区域主要有工作面采空区、密闭采空区、巷道煤柱等。工作面采空区漏风造成遗煤氧化,易出现煤自然发火隐患;采空区始采线和终采线需安装、回撤综采设备,导致其断面较大,巷帮因受矿压影响易破裂,且开切眼与终采线处推进速度较慢,破碎煤体氧化时间较长,煤自燃危险性较高。工作面在回采过程中,受采动压力影响,工作面与密闭采空区之间保护煤柱、煤岩层顶板可能被压裂震碎,在风压的作用下致使煤岩破裂,形成漏风通道,导致密闭采空区与工作面采空区贯通处的原浮煤区、老空区密闭周边煤体存在自然发火隐患。
1.2 外因火灾危险性分析
物质燃烧需同时具备三要素:可燃物、助燃物、着火源。从物质燃烧的三要素角度分析,矿井外因火灾原因比较复杂,主要是因为煤矿生产过程中构成燃烧条件的三要素普遍存在,如机械摩擦及物体碰撞、静电、电气火花、明火作业、违章放炮、电缆老化起火、瓦斯或煤尘爆炸等均可能引发火灾,具体位置主要有井下机电硐室及其配电点、带式输送机系统、电缆密集区等。井下机电硐室及其配电点主要存储大型机电设备,用于井下集中供电,由于机电设备数量多、功率大、放热量高,在有限空间内极易发生设备漏电,导致线缆、机电设备燃烧,并引发系列火灾。带式输送机系统服务于全矿井生产运行,胶带和托辊、滚筒之间长时间摩擦产生热量,易导致胶带火灾事故。电气设备电缆接头接触不良或流过大电流会导致发热着火,电缆短路时短路保护失灵也会导致火灾事故。
2. 煤矿火灾分源分区监测指标体系
按引发火灾的热量来源不同,内外因火灾产生的区域各异,着火参数及其检测方式略有差异,因此,本文提出一种分源分区监测火情态势的方法。内因火灾方面,主要针对较易发生火灾的工作面采空区、密闭采空区及人工自然发火观测点等进行监测;外因火灾方面,主要针对机电硐室及其配电点、带式输送机系统、电缆等方面进行监测。
采用人工监测或在线监测的方式定期采集或更新火灾特征参量数据,按数据采集方式及影响程度,将火灾监测指标分为动态指标、静态指标和关联指标。
1) 动态指标。预警监测指标值随时间或空间发生变化,如O2、CO、CO2、温度等火灾特征参数,这些指标都可采取人工监测或在线监测的方式采集数据,数据的变化程度直接反映火灾风险态势。
2) 静态指标。预警监测指标不随时间或空间发生变化,如煤自燃特性、煤层赋存条件、顶底板的岩层特性、开拓开采因素等,这些指标主要提供基础信息,是煤矿火灾预警的主要影响因素。
3) 关联指标。监测期间的指标值与火灾特征参数关联,需通过理论分析转换成火灾风险分析数据,如漏风量、压差强度等。
根据煤矿火灾分源分区监测火情态势,考虑到国内当前技术水平,在静态指标基础上,动态指标、关联指标局部监测位置及监测方式如下:工作面采空区采用束管监测系统、光纤测温系统及安全监控系统对煤自燃标志性气体(CO,C2H6,C3H8 等)、温度参数进行监测;密闭采空区采用密闭在线监测系统或人工取样对温度、压差、CO、CO2、CH4、O2参数进行监测;人工自然发火观测点采用人工取样对温度、O2、CO、CO2、CH4参数进行监测;机电硐室及其配电点采用变电硐室防灭火监控系统对温度、烟雾、CO参数进行监测;带式输送机系统采用带式输送机防灭火监控系统及安全监控系统对温度、烟雾、CO参数进行监测;电缆采用光纤测温系统对温度参数进行监测。
3. 煤矿火灾智能预警系统框架设计
3.1 系统总体架构
煤矿火灾智能预警系统建设是一项复杂的信息化系统工程,其设计理念为构建“信息融合+统一平台+异常报警+综合预警”火灾预警模式,搭建煤矿火灾一体化预警报警平台。平台应融合多软硬件系统,遵循数据统一采集、统一存储、统一管理、统一展示的原则,解决数据孤岛、数据烟囱等问题,实现多源数据的共享与深度挖掘利用[20-22]。按照业务结构,将煤矿火灾智能预警系统分为感知控制层、数据传输层、存储分析层和应用管理层,各层级功能明确,互联互通,形成有机整体。煤矿火灾智能预警系统总体架构如图1 所示。
感知控制层:架构基础底层,将煤矿火灾监测子系统中涉及的安全、生产、运营相关数据作为数据源,感知煤矿火灾环境参量,同时控制防灭火设备。通过高精度传感器类等设备对煤矿火灾特征多参量信号进行监测,为煤矿火灾预警决策提供基础数据;同时通过PLC智能控制等技术实现防灭火设施的联动控制。各设备通过网线或光纤等物理连接,与数据传输层紧密相连,传输感知信息和控制信号。
数据传输层:作为整个架构的桥梁,通过工业环网或 4G/5G 等网络进行数据传输,实现煤矿火灾监测数据的实时在线传输,是煤矿火灾预警体系前端和后台信息传输的纽带。
存储分析层:系统架构的核心层,通过应用程序接口调用基础底层的硬件数据资源,获取和集成井下火灾各类监测系统的多源异构数据,通过火灾预警数据库及专家知识库进行必要的数据清理,并分级分类保存。通过构建火灾分析预警模型,依据多源数据融合预警、分级预警防灾联动规则,对采集的数据进行科学分析,实现对火灾预警特征信息的超前感知,为应用管理层决策提供服务。
应用管理层:人机交互窗口,用于煤矿火灾智能化管理。对火灾信息的快速判断和预警有利于制定生产优化决策方案,以及时应对不同工况环境下的系统协同联动,实现紧急状态下的联动控制和应急救援辅助。
煤矿火灾智能预警系统实现了煤矿火灾因素一体化联合监测,具有预防并控制火情态势的设备联动功能。通过统一的平台打通系统各层之间的数据流,将数据汇聚至统一的数据资源池进行存储、治理、分析,并通过One ID,One Model,One Service实现整体数据服务。
3.2 煤矿火灾智能预警业务流程
煤矿火灾智能预警业务流程如图2所示。通过专家知识库及火灾预警数据库对煤矿火灾隐患点监测数据进行处理,通过火灾分析预警模型进行分析,给出预警结果,并结合实时监测数据,对预警结果进行动态校正。当预警结果为“示警”时,预警系统会依据专家知识数据库给出示警原因,同时通过三维可视化预警平台、应急广播、手机短信等多渠道发布预警信息,使煤矿安全管理人员关注预警事件。预警系统发布预警信息时有可能出现误报现象,需经验丰富的人员多渠道确认,若为系统误报警则追查误报警原因,若多渠道确认火灾特征指标发生了预警前兆,则启动防灾措施,针对火灾预警区域进行灌浆注氮、喷淋喷粉等设备的选择性关联、协调控制。期间,需加强火灾特征指标的监测,及时关注火情态势的发展变化。若控制失败,煤矿调度室值班管理人员应及时向矿领导班组成员汇报,请示启动应急救援预案,直到恢复正常生产状态。
4. 火灾智能预警关键技术
4.1 内因火灾预警关键技术−基于多指标联合逻辑推理的预警
煤炭自燃预测预警方法主要有指标气体法、测温法、模糊聚类分析和数值模拟法等[15]。其中指标气体法一般采用单一指标信息,易造成灾害程度估计过重或对火情隐患不知情,很难做出准确判断。基于多指标联合逻辑推理的预警方法[16]依据煤温及其对应的各类气体浓度变化趋势,结合其他因素综合判定煤自燃的危险程度,可提高预警精准度。因此,本文采用基于多指标联合逻辑推理的预警方法。采集陕煤集团神木红柳林矿业有限公司5−2煤层煤样,通过实验室程序进行升温氧化实验研究,并结合工作面现场考察分析,确立了适用于该煤层的自然发火标志气体指标及其临界值。CO是红柳林煤矿5−2煤层自然发火的指标气体之一,C2H6,C3H8是判别煤自然发火进程的辅助指标,工作面采空区、回风流煤自燃气体指标、预警规则及对策措施分别见表1和表2。
表 1 工作面采空区煤自燃气体指标、预警规则及对策措施Table 1. Gas indicators, warning rules and countermeasures for coal spontaneous combustion in goaf of working face阶段 CO体积
分数/10−6C2H6 C3H8 状态 安全风险等级 预警级别 对策措施 Ⅰ 0~50 无 无 无自燃隐患 低风险 蓝色预警 注氮等预防性防灭火措施 Ⅱ 50~500 无 无 缓慢氧化 一般风险 黄色预警 应加强监测,采取注氮、灌浆等预防性防灭火措施 Ⅲ 500~1000
(默认)无 无 自热加速氧化 较大风险 橙色预警 应加强注氮、注浆防灭火措施的时间和工程量 有 − Ⅳ >1000
(默认)有 有 激烈氧化 重大风险 红色预警 封闭火区,对该区域封闭处理,
继续采取注氮、灌浆等防灭火措施有 有 表 2 工作面回风流煤自燃气体指标、预警规则及对策措施Table 2. Gas indicators, warning rules and countermeasures for coal spontaneous combustion in the return air flow of the working face阶段 CO体积分数/10−6 C2H6 C3H8 状态 安全风险等级 预警级别 对策措施 Ⅰ 0~24 无 无 无自燃隐患 低风险 蓝色预警 注氮等预防性防灭火措施 Ⅱ 24~100 无 无 缓慢氧化 一般风险 黄色预警 应加强监测,采取注氮、灌浆等预防性防灭火措施 Ⅲ >100
(默认)无 无 自热加速氧化 较大风险 橙色预警 应加强注氮、注浆防灭火措施的时间和工程量 有 无 Ⅳ >100
(默认)有 有 激烈氧化 重大风险 红色预警 封闭火区,对该区域封闭处理,
继续采取注氮、灌浆等防灭火措施有 有 4.2 外因火灾预警关键技术−基于D−S 证据理论的多参量融合预警
用单一传感器进行火灾预警常有误报情况发生,多传感器信息融合预警准确性比单一传感器高,并已在工业、国防、商业等多个领域广泛应用[23-24]。目前较为普遍的融合技术有阈值判断法、信号关系式法、神经网络法、模糊算法、D−S 证据理论等。其中,D−S 证据理论是一种基于估计的统计学方法,通过信任函数的方式将多种信息融合起来得到火灾发生的概率[25]。通过D−S 证据理论的信息融合技术,而无需条件概率等先验条件,即可对互斥事件进行证据的有效结合。D−S 证据理论作为在数据融合目标识别领域的智能算法,在不确定问题的推理方面表现突出[26]。该方法综合多个信息源的证据,通过不断缩小假设集的方法,得到综合信息。首先介绍D−S 证据理论的数据融合规则[27],根据传感器提供的各个假设的信息,得到针对每一个假设的可信度区间。定义一个集函数:
$$ m:{2^\varTheta } \to \left[ {0,1} \right] $$ (1) $$ \left\{ \begin{gathered} m\left( \phi \right) = 0 \\ \sum\limits_{A \subset \varTheta } {m\left( A \right) = 1} \\ \end{gathered} \right. $$ (2) 式中:Θ为识别框架,即所有可能出现的判决结果的集合;$\phi $为空集;A为所包含的假设,称为焦元。
若满足式(1)和式(2),则m(A)为A的基本概率赋值Mass函数。m 可称为框架Θ的基本可信度分配。
多组数据融合则是对多个数据概率进行正交和运算,n 个传感器的数据融合概率为[28]
$$ m\left( A \right) = {m_1} \oplus {m_2} \oplus \cdots \oplus m{}_n\left( A \right) {\text{ }} = \frac{{\displaystyle\sum\limits_{ \cap A_i = A} {\prod\limits_{i = 1}^n {{m_i}\left( {{A_i}} \right)} } }}{K} $$ (3) $$ {{K}} = 1 - \sum\limits_{ \cap A_i = \phi } {\prod\limits_{i = 1}^n {{m_i}\left( {{A_i}} \right)} } = \sum\limits_{ \cap A_i \ne \phi } {\prod\limits_{i = 1}^n {{m_i}\left( {{A_i}} \right)} } $$ (4) 式中:K为各传感器数据结果之间的冲突系数;mi为第i个传感器的基本可信度分配;Ai为mi对应的焦元。
多参量融合预警结果包含 3 种互斥事件,分别为起火、不起火和不确定。为了使 3 种互斥事件的概率之和为 1,满足 Mass赋值函数成立的条件,对其进行归一化处理:
$$ {P_{{\mathrm{R}}1}} = \frac{{{P_{{\mathrm{R}}1}}}}{{{P_{{\mathrm{R}}1}} + {P_{{\mathrm{R}}2}} + {P_{{\mathrm{R}}3}}}} $$ (5) $$ {P_{{\mathrm{R}}2}} = \frac{{{P_{{\mathrm{R}}2}}}}{{{P_{{\mathrm{R}}1}} + {P_{{\mathrm{R}}2}} + {P_{{\mathrm{R}}3}}}} $$ (6) $$ {P_{{\mathrm{R}}{\text{3}}}} = \frac{{{P_{{\mathrm{R}}{\text{3}}}}}}{{{P_{{\mathrm{R}}1}} + {P_{{\mathrm{R}}2}} + {P_{{\mathrm{R}}3}}}} $$ (7) 式中PR1、PR2和PR3分别为起火、不起火和不确定的初始概率。
在红柳林煤矿井下机电硐室及其配电点、带式输送机系统布置温度、烟雾、CO传感器监测设备,将基于D−S 证据理论的多参量融合预警方法用于煤矿外因火灾预警[29],预警规则及对策措施见表3。
表 3 基于 D−S 证据理论的多参量融合预警规则及对策措施Table 3. Multi parameter fusion warning rules and countermeasures based on D-S evidence theory阶段 起火概率Pfire 安全风险等级 预警级别 对策措施 Ⅰ 0<Pfire<0.25 低风险 蓝色预警 喷淋喷粉等预防性防灭火措施 Ⅱ 0.25≤Pfire<0.5 一般风险 黄色预警 应加强监测,采取喷淋、喷粉等预防性防灭火措施 Ⅲ 0.5≤Pfire<0.75 较大风险 橙色预警 应加强喷淋、喷粉等防灭火措施的时间和工程量 Ⅳ 0.75≤Pfire<1 重大风险 红色预警 封闭火区,对该区域封闭处理,继续采取注喷淋、喷粉等防灭火措施 5. 应用实例
红柳林煤矿现开采煤层3−1煤、4−2煤和5−2煤,自燃倾向性等级均为Ⅰ类,属容易自燃煤层。依据《智能化示范煤矿验收管理办法(试行)》,为达到智能化示范煤矿的要求,在全矿井范围内针对重点火灾危险区域建设完善的智能化防灭火系统。
试验期间部署了信息采集终端、服务器和客户端,依托工业以太环网平台,搭建了网络环境,布署了数据库,植入火灾预测预警模型与协同联动防控机制,构建煤矿火灾智能预警系统。以25211综采工作面为例,火灾预警平台结合煤自然发火实验、热重实验及现场测试等基础数据,图像化动态展现光纤测温系统、束管监测系统实时监测数据;基于二维 GIS 平台建立地图服务和协同服务,通过火灾特征预警模型,反演矿井火灾监测点的安全态势,划分矿井重点防火区域,依据红、橙、黄、蓝4级颜色预警,实时展现矿井火灾监控预警区域,并协同远程联动灌浆注氮防灭火系统。系统同时具备火灾智能模拟演示功能,可实现智能火灾仿真与报警,以及避灾路线的动态规划,提供避灾路线的辅助决策。煤矿火灾智能预警系统“一张图”平台如图3 所示。
系统部署运行期间,同时对矿井 3 个综采工作面、251个采空区密闭、38个人工自然发火观测点、北二盘区4−2煤变电所、主斜井一部胶带及安全监控系统监测点进行了跟踪预警。智能预警系统共发布蓝色预警32次、黄色预警1 次、橙色预警 0 次、红色预警 0 次。预警跟踪考察结果见表4。预警原因分析:综采工作面蓝色预警次数最多,因感温光纤埋入采空区,顶板岩层垮落,岩石冲击力破坏感温光纤原有组织,形成局部挤压区,造成局部温度异常;发生黄色预警是因温度及CO联合指标异常,预警准确率高达90.9%。北二盘区4−2煤变电所发生蓝色预警,是因为作业人员例行巡视检查,误操作触碰七氟丙烷灭火器瓶组电磁阀,预警准确率为100%。主斜井一部胶带发生蓝色预警,是因为烟雾传感器长期处于高湿、高温度环境下,空气动力学直径为7.07 μm以下的粉尘颗粒物堵塞烟雾光电感烟器件,改变了光的传播特性,造成误报警,预警准确率为66.6%。软件平台发布预警信息后,管理人员立即增派技术人员至现场确认预警,避免火灾事故的发生。
表 4 煤矿火灾预警跟踪考察结果Table 4. Results of coal mine fire warning tracking and inspection考察区域 实际危险次数 蓝色预警次数 黄色预警次数 橙色预警次数 红色预警次数 预警准确率/% 综采工作面 33 29 1 0 0 90.90 密闭采空区 0 0 0 0 0 − 人工自然发火观测点 0 0 0 0 0 − 北二盘区4−2煤变电所 1 1 0 0 0 100.00 主斜井一部胶带 3 2 0 0 0 66.00 安全监控系统监测点 0 0 0 0 0 − 6. 结论
1) 基于合理性、科学性、可监测性及时效性原则,阐述了煤矿火灾危险因素,提出一种分源分区监测火情态势的方法,建立了“动、静、关联”相结合指标体系。
2) 设计了火灾智能预警系统的总体架构和业务流程,并给出了系统关键技术实现,采用基于多指标联合逻辑推理的预警方法、基于D−S 证据理论的多参量融合预警方法实现矿井火灾多源信息融合预警。
3) 现场试验结果表明:火灾智能预警系统实现了对矿井火灾的有效监测预警,具有煤矿火灾风险预警“一张图”可视化展示功能,同时具备火灾智能模拟演示功能及避灾路线动态规划功能。
-
表 1 试验工作面地质情况
Table 1 Geological conditions of the coal mining face
煤层厚度/m 煤层倾角/(°) 基本顶厚度/m 直接顶厚度/m 底板厚度/m 1.7~3.0 1~5 9.8 6.6 8.0 表 2 预测高度和实际高度偏差情况
Table 2 Deviation between predicted height and actual height
位置 偏差/cm 占比/% 顶板 ≤5 76.69 ≤10 94.66 ≤15 100 底板 ≤5 91.74 ≤10 97.69 ≤15 100 -
[1] 张世龙,张民波,朱仁豪,等. 近5年我国煤矿事故特征分析及防治对策[J]. 煤炭与化工,2021,44(8):101-106,109. ZHANG Shilong,ZHANG Minbo,ZHU Renhao,et al. Analysis of the characteristics of China's mine accidents in the past five years and countermeasures for prevention and control[J]. Coal and Chemical Industry,2021,44(8):101-106,109.
[2] 谭震,王建文,王宏科,等. 煤矿灾害智能综合防治系统构建及关键技术[J]. 中国煤炭,2022,48(12):68-75. TAN Zhen,WANG Jianwen,WANG Hongke,et al. Construction and key technologies of intelligent comprehensive prevention and control system for coal mine disaster[J]. China Coal,2022,48(12):68-75.
[3] 张胜利,汤家轩,王猛. “双碳”背景下我国煤炭行业发展面临的挑战与机遇[J]. 中国煤炭,2022,48(5):1-5. ZHANG Shengli,TANG Jiaxuan,WANG Meng. Challenges and opportunities for the development of China's coal industry under the background of carbon peak and carbon neutrality[J]. China Coal,2022,48(5):1-5.
[4] 李浩荡. 减碳背景下煤炭如何直面挑战[N]. 中国煤炭报,2021-04-01(2). LI Haodang. How does coal face the challenge in the context of carbon reduction[N]. China Coal News,2021-04-01(2).
[5] 王国法. 煤矿高效开采工作面成套装备技术创新与发展[J]. 煤炭科学技术,2010,38(1):63-68,106. WANG Guofa. Innovation and development of completed set equipment and technology for high efficient coal mining face in underground mine[J]. Coal Science and Technology,2010,38(1):63-68,106.
[6] 赵亦辉,赵友军,周展. 综采工作面采煤机智能化技术研究现状[J]. 工矿自动化,2022,48(2):11-18,28. ZHAO Yihui,ZHAO Youjun,ZHOU Zhan. Research status of intelligent technology of shearer in fully mechanized working face[J]. Industry and Mine Automation,2022,48(2):11-18,28.
[7] 王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10. WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.
[8] WANG Guofa,XU Yongxiang,REN Huaiwei. Intelligent and ecological coal mining as well as clean utilization technology in China:review and prospects[J]. International Journal of Mining Science and Technology,2019,29(2):161-169. DOI: 10.1016/j.ijmst.2018.06.005
[9] 任怀伟,巩师鑫,刘新华,等. 煤矿千米深井智能开采关键技术研究与应用[J]. 煤炭科学技术,2021,49(4):149-158. REN Huaiwei,GONG Shixin,LIU Xinhua,et al. Research and application on key techniques of intelligent mining for kilo-meter deep coal mine[J]. Coal Science and Technology,2021,49(4):149-158.
[10] 王昕. 基于电磁波技术的煤岩识别方法研究[D]. 徐州:中国矿业大学,2017. WANG Xin. Study of coal-rock identification method based on electromagnetic wave technology[D]. Xuzhou:China University of Mining and Technology,2017.
[11] 杨文萃,邱锦波,张阳,等. 煤岩界面识别的声学建模[J]. 煤炭科学技术,2015,43(3):100-103. YANG Wencui,QIU Jinbo,ZHANG Yang,et al. Acoustic modeling of coal-rock interface identification[J]. Coal Science and Technology,2015,43(3):100-103.
[12] 孙继平,陈浜. 基于双树复小波域统计建模的煤岩识别方法[J]. 煤炭学报,2016,41(7):1847-1858. SUN Jiping,CHEN Bang. An approach to coal-rock recognition via statistical modeling in dual-tree complex wavelet domain[J]. Journal of China Coal Society,2016,41(7):1847-1858.
[13] 刘俊利,赵豪杰,李长有. 基于采煤机滚筒截割振动特性的煤岩识别方法[J]. 煤炭科学技术,2013,41(10):93-95,116. LIU Junli,ZHAO Haojie,LI Changyou. Coal-rock recognition method based on cutting vibration features of coal shearer drums[J]. Coal Science and Technology,2013,41(10):93-95,116.
[14] 孙振明,毛善君,祁和刚,等. 煤矿三维地质模型动态修正关键技术[J]. 煤炭学报,2014,39(5):918-924. SUN Zhenming,MAO Shanjun,QI Hegang,et al. Dynamic correction of coal mine three-dimensional geological model[J]. Journal of China Coal Society,2014,39(5):918-924.
[15] 殷大发. 煤矿三维地质模型精度评价及动态更新技术探讨[J]. 煤矿开采,2018,23(4):20-24. YIN Dafa. Exploration of precision evaluation and dynamic update technology of coal mine 3D geological model[J]. Coal Mining Technology,2018,23(4):20-24.
[16] 刘万里,张学亮,王世博. 采煤工作面煤层三维模型构建及动态修正技术[J]. 煤炭学报,2020,45(6):1973-1983. LIU Wanli,ZHANG Xueliang,WANG Shibo. Modeling and dynamic correction technology of 3D coal seam model for coal-mining face[J]. Journal of China Coal Society,2020,45(6):1973-1983.
[17] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285-2295. CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285-2295.
[18] 卢新明,阚淑婷. 煤炭精准开采地质保障与透明地质云计算技术[J]. 煤炭学报,2019,44(8):2296-2305. LU Xinming,KAN Shuting. Geological guarantee and transparent geological cloud computing technology of precision coal mining[J]. Journal of China Coal Society,2019,44(8):2296-2305.
[19] 董刚,马宏伟,聂真. 基于虚拟煤岩界面的采煤机上滚筒路径规划[J]. 工矿自动化,2016,42(10):22-26. DONG Gang,MA Hongwei,NIE Zhen. Path planning of shearer up-drum based on virtual coal-rock interface[J]. Industry and Mine Automation,2016,42(10):22-26.
[20] 陈尔奎,吴梅花. 基于改进遗传算法和改进人工势场法的复杂环境下移动机器人路径规划[J]. 科学技术与工程,2018,18(33):79-85. CHEN Erkui,WU Meihua. The path planning of mobile robots based on the improved genetic algorithm and the improved artificial potential field algorithm in complex environment[J]. Science Technology and Engineering,2018,18(33):79-85.
[21] 权国通,谭超,侯海潮,等. 基于粒子群三次样条优化的采煤机截割路径规划[J]. 煤炭科学技术,2011,39(3):77-79. QUAN Guotong,TAN Chao,HOU Haichao,et al. Cutting path planning of coal shearer based on particle swarm triple spline optimization[J]. Coal Science and Technology,2011,39(3):77-79.
-
期刊类型引用(2)
1. 张哲,张小丽,王标,张鹤,高碧荷,方雨菲,肖巍. TiO_2/O_3-MNBs协同催化降解煤化工废水. 西安科技大学学报. 2025(01): 182-190 . 百度学术
2. 刘华锋. 干湿循环处理后煤在差速循环荷载作用下的力学特征. 工矿自动化. 2024(11): 152-160 . 本站查看
其他类型引用(0)