综掘工作面风幕阻尘效果影响因素研究

夏丁超, 吕品, 杜朋, 王金月

夏丁超,吕品,杜朋,等. 综掘工作面风幕阻尘效果影响因素研究[J]. 工矿自动化,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007
引用本文: 夏丁超,吕品,杜朋,等. 综掘工作面风幕阻尘效果影响因素研究[J]. 工矿自动化,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007
XIA Dingchao, LYU Pin, DU Peng, et al. Factors influencing the dust-blocking effect of air curtains during the fully mechanized excavation of working faces[J]. Journal of Mine Automation,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007
Citation: XIA Dingchao, LYU Pin, DU Peng, et al. Factors influencing the dust-blocking effect of air curtains during the fully mechanized excavation of working faces[J]. Journal of Mine Automation,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007

综掘工作面风幕阻尘效果影响因素研究

基金项目: 国家重点实验室开放基金项目(JYBSYS2019102)。
详细信息
    作者简介:

    夏丁超(1997—),男,安徽安庆人,硕士研究生,主要研究方向为矿井粉尘防治,E-mail:1546119121@qq.com

    通讯作者:

    吕品(1963—),男,安徽来安人,教授,博士,主要从事煤矿灾害事故控制理论和技术、安全评价理论和方法、火灾控制理论和技术等方面的教学与研究工作,E-mail:plv@aust.edu.cn

  • 中图分类号: TD714

Factors influencing the dust-blocking effect of air curtains during the fully mechanized excavation of working faces

  • 摘要: 目前综掘工作面粉尘污染的研究多集中于单一因素对综掘工作面风幕阻尘效果的影响,而未充分考虑各因素间的交互作用,使得压风分流技术的工程应用效果欠佳。为明确附壁风筒径向出风距离、径向出风比及轴向出风距离对风幕阻尘效果的影响,以潘三矿810西翼机巷综掘工作面为研究对象,运用Fluent软件对径向出风距离为10~25 m、径向出风比为0.6~0.9及轴向出风距离为6~12 m条件下的风流分布和粉尘扩散情况进行数值模拟。结果表明:① 随着径向出风距离增大,径向涡流风幕在巷道内的转变更充分,综掘机司机前端的风流分布越均匀,更有利于形成风速方向均指向工作面的轴向阻尘风幕。当径向出风距离为10 m时,距工作面7 m断面内涡流特性明显,风速方向紊乱;当径向出风距离为25 m时,距工作面7 m断面内,风流分布趋于均匀,风速方向均指向工作面,形成了能够覆盖全断面的轴向阻尘风幕。② 随着径向出风比增大,整流风筒轴向风流风量减小,轴向风流风速和射流强度降低,轴向风流对综掘工作面前端气流的扰动减弱;径向出风比越大,越有利于形成风流方向指向工作面且能覆盖全断面的轴向阻尘流场,即轴向阻尘风幕。③ 径向涡流风幕的阻尘能力随径向出风比的增大先增强后减弱,轴向阻尘风幕的阻尘能力随径向出风比的增大而不断增强。④ 在采取压风分流风幕阻尘技术后,当压风总量为300 m3/min,吸风量为400 m3/min,附壁风筒径向出风距离为20 m,径向出风比为0.9,整流风筒轴向出风距离为8~10 m时,能很好地将粉尘聚集在吸尘口附近,达到高效控尘除尘的目的。在810西翼机巷综掘工作面进行现场测试,测点风速和粉尘质量浓度实测值与模拟值基本一致,高浓度粉尘被有效阻控于工作面前端,隔尘效果较为明显,验证了数值模拟的有效性。
    Abstract: Prevalent research on dust pollution during fully mechanized excavation has mainly focused on the impact of individual factors on the effectiveness of air curtains in fully mechanized excavation sites. However, scant research has been devoted to the interaction between factors, because of which pressure-induced air diversion technology has not been adequately applied to this context.To investigate the impact of the radial distance of the outlet of air, the ratio of this outlet, and the distance between the outlet and the wall-coated air duct on the effectiveness of dust blocking by air curtains, the authors of this study consider the excavation of the working face of the 810 west wing machine tunnel at the Pansan Mine . We used Fluent software to numerically simulate the distribution of wind flow and the diffusion of dust under a distance of the radial outlet of air of 10-25 m, a ratio of the outlet of 0.6-0.9, and an axial distance of the outlet of 6-12 m.The results showed that: ① As the distance of the radial outlet of air increased, the radial vortex air curtain transforms more fully in the tunnel . The wind flow at the front end of the excavation operator was more evenly distributed, and the wind speed was directed toward the working face such that this was more conducive to the formation of an axial dust-blocking air curtain.When the radial distance of the outlet of air was 10 m, vortical characteristics became apparent within a distance of 7 m from the working surface, and the direction of wind became disordered. When the radial distance of the air outlet was 25 m, the wind flow tended to be uniform within 7 m of the working surface, and its direction was evenly distributed toward the working surface. This led to the formation of an axial dust-blocking wind curtain that could cover the entire section.② As the ratio of the radial outlet of air increased, the volume of axial airflow of the rectifier air cylinder decreased to reduce the velocity of axial airflow and the intensity of the jet. This in turn reduced the disturbance caused by the axial airflow to that at the top of the mechanized working face that was being excavated. A higher ratio of the radial outlet of air was more conducive to the formation of an axial dust-blocking flow field, with the wind directed toward the working surface and covering the entire section. This led to an axial dust-blocking air curtain. ③ The dust-blocking ability of the radial vortical air curtain initially increased and then decreased as the ratio of the radial outlet of air increased. Its ability then continued to improve as the ratio was further increased. ④ We implemented the dust-control technology based on the air curtain with forced ventilation-induced diversion. When the pressure-induced volume of air was 300 m3/min and the volume of air suction was 400 m3/min, the distance between the radial outlet of air and the attached wall of the air duct was 20 m. The ratio of the radial outlet of air, and the distance between this outlet and the air duct of the rectifier was 8-10 m. The air curtain was able to collect dust near the port of the dust suction for efficient dust control and removal.We conducted an on-site test of the fully mechanized excavation working face of the 810 west wing machine tunnel. The empirically measured data of wind speed and dust mass concentration at measuring points and the results of numerical simulations were consistent with each other. Highly concentrated dust was blocked at the front end of the working face, and its isolation was noticeable. This confirms the effectiveness of the numerical simulations.
  • 近年来综掘技术快速发展,机械化程度逐步提高,掘进速度加快,综掘工作面产尘量随之增加[1-3],不仅加大了综掘工作面的粉尘治理难度,也严重危害井下作业人员的职业健康。现阶段国内外综掘工作面粉尘防治手段有通风除尘、喷雾降尘、泡沫降尘等[4-6]。对于通风除尘技术,压抽混合式通风虽能将大量含尘气流吸入除尘设备并净化,但未被除尘设备及时抽离的含尘气流会从巷道回风侧向综掘机后方作业区域扩散[7],导致降尘效果不理想。

    为进一步改善综掘工作面环境,国内外学者提出了压风分流技术[8],通过附壁风筒径向风流在综掘工作面前端形成一道风幕屏障,以阻控粉尘在巷道内扩散,并利用除尘设备进行高效抽尘净化,以解决综掘工作面粉尘污染问题。聂文等[9]通过数值模拟和工程应用方法,研究得出压风气幕的形成取决于压风距离,并确定了高浓度粉尘扩散距离与压风距离之间的数学关系式。Liu Qiang等[10]分析了附壁风筒安装位置对粉尘扩散的影响,得出附壁风筒与综掘工作面距离为25 m时,风幕阻尘性能最佳。陈芳等[11]研究了附壁风筒轴径向出风比对控尘效果的影响,结果表明,当轴径向出风比为1∶3时,风幕控尘效果最好。王建国等[12]利用Fluent进行数值模拟,分析附壁风筒条缝参数对综掘工作面控尘效果的影响,得到了控制综掘工作面粉尘扩散的最佳条缝参数。王昊等[13]发现压抽风量比越小,越有利于形成分布较为均匀的阻尘风幕,并通过现场实测验证了数值模拟的有效性。

    以上成果在一定程度上推动了风幕阻尘的研究进程。然而,目前的研究多集中于单一因素对综掘工作面风幕阻尘效果的影响,而未充分考虑各因素间的交互作用,使得压风分流技术的工程应用效果欠佳。为此,本文以淮南矿业(集团)有限责任公司潘集第三煤矿(简称潘三矿)810西翼机巷综掘工作面为研究对象,通过数值模拟技术,对比分析附壁风筒径向出风距离和径向出风比(径向出风量与压风总量之比)、轴向出风距离对风流运移及粉尘分布规律的影响,得出不同径向出风距离下粉尘扩散距离随径向出风比变化的数学关系式,获得最佳风幕阻尘工艺参数,并采用现场实测的方法,验证数值模拟的有效性,为压风分流风幕阻尘技术的应用提供理论指导。

    巷道内粉尘扩散属于多相流运动,在研究粉尘运移规律时,常采用气−固两相流数学模型[14],将风流视为连续相,粉尘颗粒视为离散相。

    巷道内风幕运移属于附壁射流和强旋流形成的复合湍流流场[15],Reynolds平均法是目前应用最为广泛的湍流数值模拟方法,Realizable $ k - \varepsilon $湍流模型对于附壁射流和强旋流具有很好的表现[16],因此选用该模型开展风流场的数值模拟。

    $ k $方程−湍流动能方程和$ \varepsilon $方程−湍流动能耗散率方程分别为

    $$ \frac{\partial(\rho k)}{\partial t}+\frac{\partial(\rho u_i)}{\partial w_i}=\frac{\partial}{\partial w_j}\left[\left(\mu+\frac{\mu_{\mathrm{t}}}{\sigma_k}\right)\frac{\partial k}{\partial w_j}\right]+G_k-\rho\varepsilon $$ (1)
    $$ \begin{split} & \frac{\partial(\rho\varepsilon)}{\partial t}+\frac{\partial(\rho\varepsilon u_i)}{\partial w_i}=\frac{\partial}{\partial w_j}\left[\left(\mu+\frac{\mu_{\mathrm{t}}}{\sigma_{\varepsilon}}\right)\frac{\partial\varepsilon}{\partial w_j}\right]+ \\ & \qquad\frac{1}{\sqrt{2}}\rho c_1\varepsilon\left(\frac{\partial u_j}{\partial w_i}+\frac{\partial u_i}{\partial w_j}\right)-\rho c_2\frac{\varepsilon^2}{k+\sqrt{\nu\varepsilon}} \end{split} \qquad\qquad\; \, $$ (2)

    式中:$ \rho $为空气密度;$ k $为湍流动能;$ t $为时间;$ u_i,u_j $分别为$ i,j $(ij分别为xyz 3个方向)方向的时均速度;$ (w_i,w_j) $为流场中任意一点在各自方向上的坐标位置;$ \mu $为流体黏度;$ \mu_{\mathrm{ }}t $为流体湍动黏度;$ \sigma_ k,\sigma_ \varepsilon $分别为$ k $方程和$ \varepsilon $方程的紊流普朗特数;$ G_k $为由平均运动速度梯度引起的紊流动能生成项;$ \varepsilon $为湍流动能耗散率;$ c_1, c_2 $为常数,c1=1.4,c2=1.9;$ \nu $为平均速度。

    在计算粉尘颗粒运移时,Fluent是通过积分拉格朗日坐标系下粒子间相互作用的微分方程来求解离散相颗粒扩散轨迹[17]。在风流作用下,巷道内粉尘颗粒主要受到重力、浮力、曳力及萨夫曼升力的影响[18-20],粉尘颗粒受力方程为

    $$ \frac{{{\mathrm{d}}u_{\mathrm{p}}}}{{{\mathrm{d}}t}} = F_{\mathrm{D}}(u - u_{\mathrm{p}}) + g\frac{{\rho_ {\mathrm{p}} - \rho }}{{\rho_ {\mathrm{p}}}} + F_{\mathrm{S}} $$ (3)
    $$ F_{\mathrm{D}} = \frac{{18\mu }}{{\rho_ {\mathrm{p}} d_{\mathrm{p}}^2}}\frac{{C_{\mathrm{D}}{\text{Re}}}}{{24}} $$ (4)

    式中:$ u_{\mathrm{p}} $为颗粒速度;$ F_{\mathrm{D}} $为曳力;$ u $为流体速度;$ g $为重力加速度;$ \rho_ {\mathrm{p}} $为颗粒密度;$ F_{\mathrm{S}} $为萨夫曼升力;$ d_{\mathrm{p}} $为颗粒直径;$ C_{\mathrm{D}} $为曳力系数;Re为雷诺数。

    潘三矿810西翼机巷为岩石巷道,综掘巷道内设有综掘机、转载机、带式输送机、供风装置、除尘设备等,现场情况复杂,故对综掘工作面的几何模型进行适当简化。利用Design Modeler建模软件构建810西翼机巷综掘工作面等比例几何模型,如图1所示,其中Q1为压风总量,Q2为吸风量,Qr为径向出风量,Qa为轴向出风量,Qc为循环风量,Lr为径向出风距离,La为轴向出风距离。附壁风筒出风条缝如图2所示。

    图  1  巷道模型
    Figure  1.  Roadway model
    图  2  附壁风筒出风条示意图
    Figure  2.  Wall-attached duct outlet air strip seam

    自综掘工作面起取60 m长巷道作为计算区域,巷道宽5.6 m,高4.4 m,巷道断面为直墙半圆拱结构,正压风筒、附壁风筒、整流风筒及负压风筒直径均为0.8 m,风筒中轴线距巷道底板2.5 m,负压风筒吸尘口距综掘工作面4.3 m。附壁风筒筒体开有2类出风方向不同的径向条缝:一类是将附壁风筒半圆筒体按60°划分为3等份,开有上、下2条出风条缝,另一类是将附壁风筒半圆筒体按36°划分为5等份,开有上、中、下3条出风条缝。每类径向出风条缝有5组,条缝宽度均为0.05 m,且2类径向出风条缝交替布置,条缝之间间隔为0.05 m。

    810西翼机巷综掘工作面基本边界条件设置:风筒出风口及吸尘口边界为Velocity Inlet,巷道出口边界为Outflow,综掘工作面为Dust Source,其他边界均为Standard Wall,湍流动能为0.8 m2/s2,湍流动能耗散率为0.8 m2/s3

    现已测定810西翼机巷综掘工作面压风总量为300 m3/min,吸风量为400 m3/min。颗粒粒径遵循Rosin−Rammler分布,以3.5 g/s质量流率从综掘工作面喷射,数值模拟中尘源颗粒主要参数设置:最小粒径为0.58 μm,最大粒径为21.8 μm,中位粒径为4.32 μm,颗粒分布指数为1.78,粉尘材料密度为2.6 g/cm3。离散相壁面边界条件设置:巷道出口为Escape,巷道底板及吸尘口为Trap,其他壁面为Reflect。

    综掘机在截割岩体时的产尘量占综掘工作面总产尘量的80%~95%[21-22],是综掘工作面第一产尘源。因此,在进行数值模拟时,为更好地研究阻尘风幕对综掘机前端粉尘的阻控效果,不考虑其他产尘源。

    当径向出风比φ=0.9,轴向出风距离La=8 m时,数值模拟径向出风距离Lr分别取10,15,20,25 m工况下的风流分布情况。综掘工作面主要作业人员为综掘机司机,其位置距离工作面约7 m,呼吸带高度约为2.1 m。对不同工况下各断面内风幕形态进行对比分析,结果如图3所示。

    图  3  不同Lr条件下各断面内风速矢量分布
    Figure  3.  Wind speed vector distribution in each section under different radial air outlet distances Lr conditions

    图3可看出,附壁风筒将压风风流分为径向风流和轴向风流,径向风流在巷道壁面阻挡和附壁效应的作用下沿巷道壁面做环绕运动,形成径向涡流风幕,且径向涡流风幕在吸尘口抽风负压的作用下不断向工作面方向运移,在运移过程中,其涡流特性沿程不断衰减,风流速度方向逐步由径向转为轴向,综掘作业区域风流分布趋于均匀,形成了轴向阻尘风幕[23-24]。径向出风距离Lr越大,径向涡流风幕在巷道内的转变越充分,综掘机司机前端的风流分布越均匀,越有利于形成风速方向均指向工作面的轴向阻尘风幕。当Lr=10 m时,距工作面7 m断面内涡流特性明显,风速方向紊乱。当Lr=25 m时,距工作面7 m断面内风流分布趋于均匀,风速方向均指向工作面,形成了能够覆盖全断面的轴向阻尘风幕。

    研究径向出风比φ对风流分布的影响时,设置径向出风距离Lr=20 m,轴向出风距离La=8 m,φ分别为0.6,0.7,0.8,0.9时综掘工作面风流分布如图4所示。

    图  4  不同φ条件下综掘工作面风流分布
    Figure  4.  Air flow distribution of excavation face under different ratios of radial air outlet φ conditions

    图4可看出,随着径向出风比φ增大,整流风筒轴向风流风量减小,轴向风流风速和射流强度降低,轴向风流对综掘工作面前端气流的扰动减弱;φ越大,越有利于形成风流方向指向工作面且能覆盖全断面的轴向阻尘流场,即轴向阻尘风幕,在φ增大过程中,所形成的轴向阻尘流场的宽度不断增大,由φ=0.6时的0.9 m增大至φ=0.9的3.4 m,轴向阻尘流场右边界与综掘工作面的距离不断减小,由φ=0.6时的9.4 m减小至φ=0.9时的6.4 m。

    由于径向出风距离Lr和径向出风比φ在实际生产过程中会对粉尘扩散产生交互影响,为了考虑各参数对粉尘扩散的综合影响,进而得到最佳的参数匹配,对轴向出风距离La=8 m,径向出风距离Lr分别为10,15,20,25 m,径向出风比φ分别为0.6,0.7,0.8,0.9时的粉尘运移扩散情况进行对比分析。部分Lrφ条件下综掘机司机呼吸带处粉尘质量浓度分布如图5所示,不同Lrφ条件下粉尘扩散距离Ld表1,不同Lr条件下φLd间的拟合曲线及拟合公式如图6所示。

    图  5  不同Lrφ条件下综掘机司机呼吸带处粉尘质量浓度分布
    Figure  5.  Distribution of dust mass concentration in the breathing zone of excavator driver under different Lr and φ conditions
    表  1  不同Lrφ条件下粉尘扩散距离Ld
    Table  1.  Dust diffusion distance Ld under different Lr and φ condition
    Lr/m Ld/m
    φ=0.6 φ=0.7 φ=0.8 φ=0.9
    10 9.1 8.9 9.8 10.5
    15 8.3 7.4 7.1 8.2
    20 9.4 8.1 7.0 6.4
    25 12.7 11.6 10.1 6.8
    下载: 导出CSV 
    | 显示表格
    图  6  不同Lr条件下φLd之间拟合曲线及拟合公式
    Figure  6.  The fitting curve and formula between φ and Ld under different Lr conditions

    图5图6表1可看出:① 径向涡流风幕的阻尘能力随着φ增大先增强后减弱,如Lr=10,15 m时,工作面内均存在径向涡流风幕,当Lr=10 m时,Ldφ=0.6时的9.1 m先减小为φ=0.7时的8.9 m,再增大为φ=0.9时的10.5 m;当Lr=15 m时,Ldφ=0.6时的8.3 m先减小为φ=0.8时的7.1 m,再增大为φ=0.9时的8.2 m。② 轴向阻尘风幕的阻尘能力随着φ增大而不断增强,当Lr=20 m,φ=0.6,0.7,0.8,0.9时,均在综掘工作面内形成轴向阻尘流场,即轴向阻尘风幕,同时随着φ增大,Ld不断减小。③ 当Lr=25 m,φ=0.9时,径向风流才可在综掘工作面内形成轴向阻尘风幕,此时Ld=6.8 m;当φ=0.6,0.7,0.8时,由于附壁风筒距离工作面过远,导致其径向风流到达工作面时风速过低,此时粉尘受轴向风流的影响从巷道右侧逸散。④ 当Lr=20 m,φ=0.8,0.9或Lr=25 m,φ=0.9时,在综掘工作面形成的轴向阻尘风幕均能将高浓度粉尘阻控在综掘机司机前端空间范围内,但考虑到Lr过大易导致综掘工作面压入风量不足,风速过低,选定Lr=20 m,φ=0.9为最佳工艺参数。

    设置附壁风筒径向出风距离Lr=20 m,径向出风比φ=0.9,数值模拟整流风筒轴向出风距离La为6,8,10,12 m工况下的风流分布及粉尘扩散情况,确定整流风筒最佳位置。综掘机司机呼吸带处速度云图及粉尘质量浓度分布云图分别如图7图8所示。

    图  7  不同La条件下综掘机司机呼吸带处速度云图
    Figure  7.  Speed cloud at the breathing zone of excavator driver under different axial outlet distance La conditions
    图  8  不同La条件下综掘机司机呼吸带处粉尘质量浓度分布
    Figure  8.  Distribution of dust mass concentration at the breathing zone of the driver under different La conditions

    图7可看出,当La=6 m时,轴向风流抵达综掘工作面时风速较大,对工作面前端气流的扰动较大;当La=8~12 m时,轴向风流会在吸尘口与综掘工作面之间产生一个低速涡流区,同时涡流区的面积随La增大而减小。

    图8可看出,当Lr=20 m,φ=0.9,La=6~12 m时,高浓度粉尘均被有效阻控在综掘机司机前端。当La=6 m时,由于轴向风流抵达综掘工作面时风速较大,粉尘受轴向风流的影响在巷道右侧聚集,导致粉尘无法被除尘风机及时抽离;当La=8~10 m时,在综掘机前方形成涡流区,使得大部分粉尘聚集在吸尘口附近,并被负压风筒吸入;当La=12 m时,涡流区面积变小,控尘能力再次变弱。

    针对810西翼机巷综掘工作面,在采取压风分流风幕阻尘技术后,当压风总量Q1=300 m3/min,吸风量Q2=400 m3/min,附壁风筒径向出风距离Lr=20 m,径向出风比φ=0.9,整流风筒轴向出风距离La=8~10 m时,能很好地将粉尘聚集在吸尘口附近,达到高效控尘除尘的目的。

    为了验证数值模拟最佳阻尘参数的有效性,对径向出风距离为20 m、径向出风比为0.9、轴向出风距离为8 m条件下,810西翼机巷综掘工作面内风速及粉尘质量浓度进行实测分析。选取距工作面5,10,20 m断面为测风断面,测风点A,B位于工作面进风侧和回风侧人员呼吸带高度(距底板高度1.5 m)处,分别距巷道左壁面0.5,5.1 m;选取距工作面3,5,7 m断面为测尘断面,测尘点C位于工作面进风侧司机呼吸带高度处,距巷道左壁面0.5 m。各断面不同测点风速与粉尘质量浓度见表2表3

    表  2  各断面测点风速
    Table  2.  Wind speed at measuring points of each section
    距工作面距离/m A点风速/(m·s−1 B点风速/(m·s−1
    实测值 模拟值 实测值 模拟值
    5 0.48 0.54 0.39 0.45
    10 0.43 0.51 0.36 0.43
    20 1.16 1.32 0.87 0.97
    下载: 导出CSV 
    | 显示表格
    表  3  各断面测点粉尘质量浓度
    Table  3.  Dust concentration measuring value of each section
    距工作面距离/m 粉尘质量浓度/(mg·m−3
    3 208.8
    5 63.3
    7 33.6
    下载: 导出CSV 
    | 显示表格

    表2表3可看出,各测风断面风速实测值与模拟值基本一致,相对误差较小,说明数值模拟结果较为准确。各测尘点粉尘质量浓度实测值由距工作面3 m时的208.8 mg/m3降低至距工作面5 m时的63.3 mg/m3和距工作面7 m时的33.6 mg/m3,说明高浓度粉尘在轴向阻尘风幕的作用下被有效阻控在综掘机司机前端,与数值模拟结果一致。

    1) 在不同径向出风距离Lr情况下,综掘工作面内存在的风幕形态不同,且随着Lr及径向出风比φ增大,径向涡流风幕在巷道内向轴向阻尘风幕的转变更充分。在φ不断变大的过程中,所形成的轴向阻尘流场的宽度不断增大,轴向阻尘流场右边界与综掘工作面距离不断减小。

    2) 不同的风幕形态下,风幕的阻尘能力受φ的影响不同。当Lr<20 m时,综掘工作面内存在径向涡流风幕,其阻尘能力随着φ增大先增强后减弱;当Lr=20 m时,综掘工作面内形成径向阻尘风幕,其阻尘能力随着φ增大而不断增强。

    3) 当轴向出风距离La过小时,轴向风流到达综掘工作面的速度过大,会对工作面前端气流产生较大扰动,导致粉尘在巷道右侧聚集,降尘效率不佳;当La过大时,会使吸尘口正前方的涡流区面积减小,不利于粉尘积聚。根据数值模拟结论可知,当Lr=20 m,φ=0.9,La=8~10 m时,高浓度粉尘被有效阻隔在距综掘工作面6.4 m空间范围内,并在吸尘口附近聚集,810西翼机巷综掘工作面通风除尘系统降尘效果最佳。

    4) 在810西翼机巷综掘工作面进行现场实测,测点风速与粉尘质量浓度实测值与模拟值基本一致,验证了数值模拟的有效性。

  • 图  1   巷道模型

    Figure  1.   Roadway model

    图  2   附壁风筒出风条示意图

    Figure  2.   Wall-attached duct outlet air strip seam

    图  3   不同Lr条件下各断面内风速矢量分布

    Figure  3.   Wind speed vector distribution in each section under different radial air outlet distances Lr conditions

    图  4   不同φ条件下综掘工作面风流分布

    Figure  4.   Air flow distribution of excavation face under different ratios of radial air outlet φ conditions

    图  5   不同Lrφ条件下综掘机司机呼吸带处粉尘质量浓度分布

    Figure  5.   Distribution of dust mass concentration in the breathing zone of excavator driver under different Lr and φ conditions

    图  6   不同Lr条件下φLd之间拟合曲线及拟合公式

    Figure  6.   The fitting curve and formula between φ and Ld under different Lr conditions

    图  7   不同La条件下综掘机司机呼吸带处速度云图

    Figure  7.   Speed cloud at the breathing zone of excavator driver under different axial outlet distance La conditions

    图  8   不同La条件下综掘机司机呼吸带处粉尘质量浓度分布

    Figure  8.   Distribution of dust mass concentration at the breathing zone of the driver under different La conditions

    表  1   不同Lrφ条件下粉尘扩散距离Ld

    Table  1   Dust diffusion distance Ld under different Lr and φ condition

    Lr/m Ld/m
    φ=0.6 φ=0.7 φ=0.8 φ=0.9
    10 9.1 8.9 9.8 10.5
    15 8.3 7.4 7.1 8.2
    20 9.4 8.1 7.0 6.4
    25 12.7 11.6 10.1 6.8
    下载: 导出CSV

    表  2   各断面测点风速

    Table  2   Wind speed at measuring points of each section

    距工作面距离/m A点风速/(m·s−1 B点风速/(m·s−1
    实测值 模拟值 实测值 模拟值
    5 0.48 0.54 0.39 0.45
    10 0.43 0.51 0.36 0.43
    20 1.16 1.32 0.87 0.97
    下载: 导出CSV

    表  3   各断面测点粉尘质量浓度

    Table  3   Dust concentration measuring value of each section

    距工作面距离/m 粉尘质量浓度/(mg·m−3
    3 208.8
    5 63.3
    7 33.6
    下载: 导出CSV
  • [1] 龚晓燕,赵晓莹,杨富强,等. 综掘面尘源动态变化下粉尘场优化的风流调控研究[J]. 煤炭工程,2021,53(2):122-126.

    GONG Xiaoyan,ZHAO Xiaoying,YANG Fuqiang,et al. Wind flow control for optimization of dust field distribution under dynamic change of dust source in fully mechanized heading face[J]. Coal Engineering,2021,53(2):122-126.

    [2] 秦翥. 带式输送机转载点粉尘浓度分布数值模拟[J]. 工矿自动化,2018,44(7):70-74.

    QIN Zhu. Numerical simulation of dust concentration distribution in transfer site of belt conveyor[J]. Industry and Mine Automation,2018,44(7):70-74.

    [3] 龚晓燕,张浩,陈龙,等. 综掘面抽风口调控下的旋流风幕降尘优化[J]. 中国安全科学学报,2023,33(6):56-63.

    GONG Xiaoyan,ZHANG Hao,CHEN Long,et al. Optimization of cyclone air curtain dust control under control of exhaust outlet on fully mechanized excavation face[J]. China Safety Science Journal,2023,33(6):56-63.

    [4] 程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1-20.

    CHENG Weimin,ZHOU Gang,CHEN Lianjun,et al. Research progress and prospect of dust control theory and technology in China's coal mines in the past 20 years[J]. Coal Science and Technology,2020,48(2):1-20.

    [5] 吕英华,察兴鹏,聂文,等. 基于数值模拟的喷雾装置粉尘抑制研究[J]. 煤矿机械,2022,43(11):34-37.

    LYU Yinghua,CHA Xingpeng,NIE Wen,et al. Study on dust suppression of spray device based on numerical simulation[J]. Coal Mine Machinery,2022,43(11):34-37.

    [6] 张义坤. 煤矿综掘面泡沫降尘技术研究与实施[J]. 中国安全科学学报,2012,22(2):151-156.

    ZHANG Yikun. Study on dust control technology with foam in fully mechanized workface of Huoerxinhe Coal Mine[J]. China Safety Science Journal,2012,22(2):151-156.

    [7] 蒋仲安,杨斌,张国梁,等. 高原矿井掘进工作面截割粉尘污染效应及通风控尘参数分析[J]. 煤炭学报,2021,46(7):2146-2157.

    JIANG Zhong'an,YANG Bin,ZHANG Guoliang,et al. Analysis of dust pollution effect of cutting dust and ventilation control parameters at the heading face in plateau mines[J]. Journal of China Coal Society,2021,46(7):2146-2157.

    [8] 秦跃平,张苗苗,崔丽洁,等. 综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J]. 北京科技大学学报,2011,33(7):790-794.

    QIN Yueping,ZHANG Miaomiao,CUI Lijie,et al. Numerical simulation of dust migration and study on dust removal modes with the forced ventilation shunt in a fully mechanized workface[J]. Journal of University of Science and Technology Beijing,2011,33(7):790-794.

    [9] 聂文,程卫民,周刚. 综掘工作面压风气幕形成机理与阻尘效果分析[J]. 煤炭学报,2015,40(3):609-615.

    NIE Wen,CHENG Weimin,ZHOU Gang. Formation mechanism of pressure air curtain and analysis of dust suppression's effects in mechanized excavation face[J]. Journal of China Coal Society,2015,40(3):609-615.

    [10]

    LIU Qiang,NIE Wen,HUA Yun,et al. The effects of the installation position of a multi-radial swirling air-curtain generator on dust diffusion and pollution rules in a fully-mechanized excavation face:a case study[J]. Powder Technology,2018,329:371-385. DOI: 10.1016/j.powtec.2018.01.064

    [11] 陈芳,张设计,马威,等. 综掘工作面压风分流控除尘技术研究与应用[J]. 煤炭学报,2018,43(增刊2):483-489.

    CHEN Fang,ZHANG Sheji,MA Wei,et al. Research and application of the technology of forced ventilation diversion to control and reduce dust in fully mechanized excavation face[J]. Journal of China Coal Society,2018,43(S2):483-489.

    [12] 王建国,王康,樊亦洋. 附壁风筒条缝参数对综掘工作面控尘效果的影响[J]. 煤矿安全,2021,52(6):206-210.

    WANG Jianguo,WANG Kang,FAN Yiyang. Influence of slot parameters of wall-attached air duct on dust control effect of fully mechanized mining face[J]. Safety in Coal Mines,2021,52(6):206-210.

    [13] 王昊,张永亮,撒占友,等. 综掘工作面压抽风量比对多径向涡旋气幕阻尘效果的影响[J]. 矿业安全与环保,2022,49(2):117-121,126.

    WANG Hao,ZHANG Yongliang,SA Zhanyou,et al. Effect of the forced-suction airflow volume ratio on the dust suppression of swirling air curtain in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2022,49(2):117-121,126.

    [14] 龚晓燕,彭高高,宋涛,等. 掘进工作面长压短抽通风出风口风流调控参数研究[J]. 工矿自动化,2021,47(9):45-52.

    GONG Xiaoyan,PENG Gaogao,SONG Tao,et al. Study on air flow control parameters of long-pressure and short-extraction ventilation air outlets in heading face[J]. Industry and Mine Automation,2021,47(9):45-52.

    [15] 陈芳. 综掘工作面分段控风控尘技术研究与应用[J]. 煤炭工程,2019,51(12):106-110.

    CHEN Fang. Research and application of sectional airflow and dust control technology in fully mechanized tunnelling face[J]. Coal Engineering,2019,51(12):106-110.

    [16] 程卫民,王昊,孙彪,等. 综掘面径向分风与压风配比对风幕阻尘的影响[J]. 中国矿业大学学报,2017,46(5):1014-1023.

    CHENG Weimin,WANG Hao,SUN Biao,et al. Effects of ratio of radial partial air volume to pressure air volume on air curtain dust control at fully mechanized working face[J]. Journal of China University of Mining & Technology,2017,46(5):1014-1023.

    [17] 韩敏,王建国,王康. 多抽风筒对综掘面除尘的影响研究[J]. 矿业安全与环保,2022,49(5):114-118.

    HAN Min,WANG Jianguo,WANG Kang. Study on the influence of multiple exhaust pipes on dust removal in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2022,49(5):114-118.

    [18] 王昊,撒占友,王春源,等. 综掘工作面通风条件对径向旋流风幕阻尘效果的影响[J]. 煤矿安全,2022,53(3):186-192.

    WANG Hao,SA Zhanyou,WANG Chunyuan,et al. Influences of ventilation conditions of fully mechanized excavation face on dust-resistance effect of radial swirling air curtain[J]. Safety in Coal Mines,2022,53(3):186-192.

    [19] 杨泽安,王义亮. 综掘工作面湿式除尘条件下尘雾耦合数值模拟[J]. 煤矿安全,2021,52(11):170-175.

    YANG Ze'an,WANG Yiliang. Numerical simulation of dust and spray coupling under wet dust removal condition in fully mechanized excavation face[J]. Safety in Coal Mines,2021,52(11):170-175.

    [20] 魏星,高丹红,张国宝. 旋流气幕系统对综掘面控尘流场的影响研究[J]. 矿业研究与开发,2019,39(12):109-115.

    WEI Xing,GAO Danhong,ZHANG Guobao. The impact of swirling air curtain system on the dust control flow field in the fully-mechanized excavation face[J]. Mining Research and Development,2019,39(12):109-115.

    [21] 王磊,程煜,徐荣萧. 基于EDEM仿真的煤岩截割产尘规律研究[J]. 煤矿安全,2023,54(1):22-28.

    WANG Lei,CHENG Yu,XU Rongxiao. Mechanism of dust production during coal and rock cutting based on EDEM[J]. Safety in Coal Mines,2023,54(1):22-28.

    [22] 邹常富. 岩巷产尘规律及控风除尘技术研究[J]. 煤炭技术,2021,40(4):77-79.

    ZOU Changfu. Research on dust generation law of rock drift and wind control and dust removal technology[J]. Coal Technology,2021,40(4):77-79.

    [23] 侯树宏,郝军,李腾龙,等. 综掘工作面通风控尘参数匹配关系研究及应用[J]. 煤炭技术,2022,41(1):166-169.

    HOU Shuhong,HAO Jun,LI Tenglong,et al. Research and application of ventilation and dust control parameters matching in fully mechanized driving face[J]. Coal Technology,2022,41(1):166-169.

    [24] 张义坤,蒋仲安,孙雅茹. 附壁风筒对掘进工作面通风除尘的促进作用[J]. 煤矿安全,2017,48(12):161-163.

    ZHANG Yikun,JIANG Zhong'an,SUN Yaru. Promotion effect of dust removal in heading face by ventilation duct with coanda effect[J]. Safety in Coal Mines,2017,48(12):161-163.

  • 期刊类型引用(1)

    1. 李昌杰,辛创业,王昊. 综掘工作面气幕控尘参数对粉尘污染的影响. 工矿自动化. 2024(10): 160-167 . 本站查看

    其他类型引用(1)

图(8)  /  表(3)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  83
  • PDF下载量:  61
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-06-03
  • 修回日期:  2023-12-24
  • 网络出版日期:  2024-01-30
  • 刊出日期:  2024-01-30

目录

/

返回文章
返回