综掘工作面风幕阻尘效果影响因素研究

夏丁超, 吕品, 杜朋, 王金月

夏丁超,吕品,杜朋,等. 综掘工作面风幕阻尘效果影响因素研究[J]. 工矿自动化,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007
引用本文: 夏丁超,吕品,杜朋,等. 综掘工作面风幕阻尘效果影响因素研究[J]. 工矿自动化,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007
XIA Dingchao, LYU Pin, DU Peng, et al. Factors influencing the dust-blocking effect of air curtains during the fully mechanized excavation of working faces[J]. Journal of Mine Automation,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007
Citation: XIA Dingchao, LYU Pin, DU Peng, et al. Factors influencing the dust-blocking effect of air curtains during the fully mechanized excavation of working faces[J]. Journal of Mine Automation,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007

综掘工作面风幕阻尘效果影响因素研究

基金项目: 国家重点实验室开放基金项目(JYBSYS2019102)。
详细信息
    作者简介:

    夏丁超(1997—),男,安徽安庆人,硕士研究生,主要研究方向为矿井粉尘防治,E-mail:1546119121@qq.com

    通讯作者:

    吕品(1963—),男,安徽来安人,教授,博士,主要从事煤矿灾害事故控制理论和技术、安全评价理论和方法、火灾控制理论和技术等方面的教学与研究工作,E-mail:plv@aust.edu.cn

  • 中图分类号: TD714

Factors influencing the dust-blocking effect of air curtains during the fully mechanized excavation of working faces

  • 摘要: 目前综掘工作面粉尘污染的研究多集中于单一因素对综掘工作面风幕阻尘效果的影响,而未充分考虑各因素间的交互作用,使得压风分流技术的工程应用效果欠佳。为明确附壁风筒径向出风距离、径向出风比及轴向出风距离对风幕阻尘效果的影响,以潘三矿810西翼机巷综掘工作面为研究对象,运用Fluent软件对径向出风距离为10~25 m、径向出风比为0.6~0.9及轴向出风距离为6~12 m条件下的风流分布和粉尘扩散情况进行数值模拟。结果表明:① 随着径向出风距离增大,径向涡流风幕在巷道内的转变更充分,综掘机司机前端的风流分布越均匀,更有利于形成风速方向均指向工作面的轴向阻尘风幕。当径向出风距离为10 m时,距工作面7 m断面内涡流特性明显,风速方向紊乱;当径向出风距离为25 m时,距工作面7 m断面内,风流分布趋于均匀,风速方向均指向工作面,形成了能够覆盖全断面的轴向阻尘风幕。② 随着径向出风比增大,整流风筒轴向风流风量减小,轴向风流风速和射流强度降低,轴向风流对综掘工作面前端气流的扰动减弱;径向出风比越大,越有利于形成风流方向指向工作面且能覆盖全断面的轴向阻尘流场,即轴向阻尘风幕。③ 径向涡流风幕的阻尘能力随径向出风比的增大先增强后减弱,轴向阻尘风幕的阻尘能力随径向出风比的增大而不断增强。④ 在采取压风分流风幕阻尘技术后,当压风总量为300 m3/min,吸风量为400 m3/min,附壁风筒径向出风距离为20 m,径向出风比为0.9,整流风筒轴向出风距离为8~10 m时,能很好地将粉尘聚集在吸尘口附近,达到高效控尘除尘的目的。在810西翼机巷综掘工作面进行现场测试,测点风速和粉尘质量浓度实测值与模拟值基本一致,高浓度粉尘被有效阻控于工作面前端,隔尘效果较为明显,验证了数值模拟的有效性。
    Abstract: Prevalent research on dust pollution during fully mechanized excavation has mainly focused on the impact of individual factors on the effectiveness of air curtains in fully mechanized excavation sites. However, scant research has been devoted to the interaction between factors, because of which pressure-induced air diversion technology has not been adequately applied to this context.To investigate the impact of the radial distance of the outlet of air, the ratio of this outlet, and the distance between the outlet and the wall-coated air duct on the effectiveness of dust blocking by air curtains, the authors of this study consider the excavation of the working face of the 810 west wing machine tunnel at the Pansan Mine . We used Fluent software to numerically simulate the distribution of wind flow and the diffusion of dust under a distance of the radial outlet of air of 10-25 m, a ratio of the outlet of 0.6-0.9, and an axial distance of the outlet of 6-12 m.The results showed that: ① As the distance of the radial outlet of air increased, the radial vortex air curtain transforms more fully in the tunnel . The wind flow at the front end of the excavation operator was more evenly distributed, and the wind speed was directed toward the working face such that this was more conducive to the formation of an axial dust-blocking air curtain.When the radial distance of the outlet of air was 10 m, vortical characteristics became apparent within a distance of 7 m from the working surface, and the direction of wind became disordered. When the radial distance of the air outlet was 25 m, the wind flow tended to be uniform within 7 m of the working surface, and its direction was evenly distributed toward the working surface. This led to the formation of an axial dust-blocking wind curtain that could cover the entire section.② As the ratio of the radial outlet of air increased, the volume of axial airflow of the rectifier air cylinder decreased to reduce the velocity of axial airflow and the intensity of the jet. This in turn reduced the disturbance caused by the axial airflow to that at the top of the mechanized working face that was being excavated. A higher ratio of the radial outlet of air was more conducive to the formation of an axial dust-blocking flow field, with the wind directed toward the working surface and covering the entire section. This led to an axial dust-blocking air curtain. ③ The dust-blocking ability of the radial vortical air curtain initially increased and then decreased as the ratio of the radial outlet of air increased. Its ability then continued to improve as the ratio was further increased. ④ We implemented the dust-control technology based on the air curtain with forced ventilation-induced diversion. When the pressure-induced volume of air was 300 m3/min and the volume of air suction was 400 m3/min, the distance between the radial outlet of air and the attached wall of the air duct was 20 m. The ratio of the radial outlet of air, and the distance between this outlet and the air duct of the rectifier was 8-10 m. The air curtain was able to collect dust near the port of the dust suction for efficient dust control and removal.We conducted an on-site test of the fully mechanized excavation working face of the 810 west wing machine tunnel. The empirically measured data of wind speed and dust mass concentration at measuring points and the results of numerical simulations were consistent with each other. Highly concentrated dust was blocked at the front end of the working face, and its isolation was noticeable. This confirms the effectiveness of the numerical simulations.
  • 破解煤岩识别技术难题是提高采煤工作面智能化水平,推动煤炭清洁、高效、安全生产的关键[1-4]。自20世纪60年代起,英、美、澳、德、俄、中等产煤大国便开始了煤岩识别技术的研究。煤岩识别方法包括过程信号识别、图像特征识别、反射光谱识别、超声波探测识别、电磁波探测识别等。过程信号识别和超声波探测识别受机械振动和煤岩硬度影响较大,图像特征识别和反射光谱识别受粉尘、光照、瓦斯和振动等因素的限制,在工程实践中应用较少[5]

    微波频段的电磁波携带的信息量大,可避免粉尘及光纤干扰,已被广泛用于煤岩界面识别、金属无损探伤等场景[6-7]。将电磁波应用于煤岩识别中,可有效提高煤岩界面的分辨能力。本文阐述了运用电磁波技术进行煤岩识别的原理,介绍了γ射线法、雷达探测法、太赫兹信号法、电子共振法、X射线法和红外热成像法6种具体的煤岩识别实现方法,并结合实际工业应用分析了各类方法的研究现状。

    电磁波在不同介质中传播时波速不同,同时伴有能量损耗。当电磁波传播到煤层或岩层时,一部分发生折射后继续传播,另一部分则从煤岩接触表面反射后原路返回。因此,可通过电磁波的回波时差计算煤层厚度,达到煤岩识别的目的。此外,还可根据接收到的散射波进行数值反演,实现微波逆散射成像,直接获取煤岩的形状、组成及位置。

    理想状态下煤岩界面模型如图1所示。

    电磁波在不同介质中的传播速率为

    $$ \nu =\frac{V}{\sqrt{\varepsilon }} $$ (1)

    式中:$ V $ 为电磁波在真空中的传播速度;$ \varepsilon $为传播介质的相对介电常数。

    根据模型可得到雷达天线悬空高度$ {H}_{0} $和煤层厚度$ {H}_{1} $:

    图  1  煤岩界面模型
    Figure  1.  Coal and rock interface model
    $$ \begin{array}{c}{H}_{0}=\left({N}_{1}+2-{N}_{0}\right){V}_{0}T/[2(M-1)]\end{array} $$ (2)
    $$ \begin{array}{c}{H}_{1}=\left({N}_{2}-{N}_{1}\right){V}_{1}T/[2(M-1)]\end{array} $$ (3)

    式中:N1为电磁波由空气传输到煤层的时刻;N0为初始采样时刻;V0为电磁波在空气中的传播速度;T为采样时窗;M为采样率;N2为电磁波由煤层传输到岩层的时刻;V1为电磁波在煤层中的传播速度。

    联立式(2)、式(3)得

    $$ {H}_{1}=\frac{\left({N}_{2}-{N}_{1}\right){V}_{1}{H}_{0}}{\left({N}_{1}+2-{N}_{0}\right){V}_{0}} $$ (4)

    γ射线法可分为主动γ射线探测法和被动γ射线探测法2种。主动γ射线探测法也称自然γ射线探测法,其原理是利用射线传感器接收煤岩层放射的γ射线强度,从而推算煤层厚度。被动γ射线探测法也称人工γ射线探测法,其原理是在煤层下方放置人工γ射线的放射源,通过接收穿透煤层的射线来推算煤层厚度。γ射线法原理如图2所示。

    图  2  γ射线法原理
    Figure  2.  Principle of γ-ray method

    1961年,英国学者提出用γ射线测量煤炭厚度,通过γ射线与煤和岩石的相互作用测得煤岩厚度。我国自20世纪80年代初期开始开展关于γ射线的煤岩识别研究。开滦煤炭科学研究所[8]研制出数字式低能射线测灰仪,利用不同种类煤炭的化学组成不同和对γ射线的吸收不同,测量不同种类煤炭的灰分。纪纲等[9]提出了测量矿井采煤工作面煤皮厚度的方法,建立了天然γ射线穿过煤层的物理模型,通过计算机模拟衰减过程获得煤皮厚度。韩成石等[10]根据γ射线穿过不同物质时衰减率不同,提出了区别煤和矸石的方法,排除矸石效率达85%以上。王增才等[11]探讨了液压支架顶梁对天然γ射线衰减量的影响,提出了基-于天然γ射线的煤岩界面识别方法,得出在考虑支架顶梁与不考虑支架顶梁2种情况下γ射线强度相差13.6%。张宁波[12]建立了煤矸混合体自然射线辐射模型和煤矸冒落辐射探测有效厚度模型,确定了煤矸识别指标体系和临界值,验证了基于自然γ射线的煤矸自动识别技术的适用性。赵明鑫[13]提出在综放过程中利用射线进行煤岩识别,当矸石含量达到20%时,能够精确分辨煤和矸石,达到了放煤工作面对煤矸识别的精度要求。杨增福等[14]对自然γ射线测量统计分布规律及其测量误差的分布规律进行了研究,推导出新的测量误差公式。

    电磁波遇到煤岩界面时会发生反射,雷达探测法通过地质雷达的发射天线发射电磁脉冲波,并接收反射波,根据反射波的幅度和相位等信息推算煤层厚度。雷达探测法原理如图3所示,发射器发射脉冲信号,信号经反射到达接收器,通过接收信号的时间差进行探测。

    图  3  雷达探测法原理
    Figure  3.  Principles of radar detection method

    1974年D. A. Ellerbruch 等[15-16]为解决远程测量煤厚的问题,首次研究了电磁波在煤层中的穿透性及其在煤岩界面处的反射,验证了利用电磁波进行煤层测厚的可行性。文献[17-21]在此基础上进一步研究,研发了相关雷达探测系统,取得了一定的成果。

    王昕等[22]建立了煤岩界面分层介质模型,分析了电导率和探测深度对煤岩识别的影响。刘帅等[23]从煤岩介电常数出发研究了雷达对煤岩的穿透性,将煤层厚度测量误差控制在10 mm内。许献磊等[24]通过正演模拟分析了高频雷达波在空气、煤和岩层中的回波特征,提出了煤岩层位追踪算法,实现了煤岩层位快速定位。

    激光器产生的脉冲进入光谱系统中时被分成2个部分:一部分穿过发射器形成太赫兹脉冲,最终聚集在探测器上;另一部分经过平移段后形成延时系统。太赫兹信号法通过获取脉冲信号的幅值和相位,对皮秒级时域谱进行傅里叶变换,提取介质在太赫兹波段下的吸收和色散特性,进而完成煤岩识别。太赫兹信号法原理如图4所示。

    图  4  太赫兹信号法原理
    Figure  4.  Principle of Terahertz signal method

    杨成全等[25]利用太赫兹时域光谱系统,分析比对了石柱、降尘和新鲜岩石3种不同样品所产生的光谱特征,得出石柱的折射率在整个波段中都趋于稳定,其余二者则不确定。宝日玛等[26]利用太赫兹时域光谱技术对蚀变较强的辉长岩、黑云母花岗岩、花岗岩、碎屑岩和火山碎屑岩5种样品进行了光谱测试,获得了5种样品的平均折射率。许长虹等[27]利用太赫兹时域光谱技术对煤炭标准物质的氢含量和挥发分进行了研究,得出二者在太赫兹波段内的吸收系数和介电常数实部均存在负线性关系。王昕等[28-29]利用太赫兹光谱技术对煤岩的介电特性进行了研究,得出了煤岩介质的高衰减性和无明显吸收峰等特征,采用Hilbert–Huang变换对煤岩样的太赫兹光谱进行时频分析,获得了更高的时频分辨率。虞婧[30]利用太赫兹时域光谱技术提取不同样本的太赫兹信号,结合快速傅里叶变换等方法对煤岩混合物进行了特性分析。苗曙光等[31]利用太赫兹透射实验获得6种煤岩的太赫兹光谱,得到各种样品的折射率、吸收系数及介电常数,实现了煤岩的快速识别。

    电子共振法分为电子顺磁共振(Electron Paramagnetic Resonance,EPR)和电子自旋共振 (Electron Spin Resonance,ESR)。电子自转会产生磁矩,在其周围利用线圈发射一定强度的磁场,可以让这些电子磁矩重新取向,从而由低能级电子跃迁成为高能级电子。利用煤层中的不配对电子完成电磁波的吸收,可最终估算出煤层的厚度。电子共振法原理如图5所示。

    图  5  电子共振法原理
    Figure  5.  Principle of electron resonance method

    苗曙光[32]通过时域有限差分法证明了用电子共振法实现煤岩识别的可行性,并用无烟煤、烟煤、褐煤和岩石进行了试验,获得了特征参数变化规律,通过改进最大类间方差法(OTSU)获得了可读性更强的煤岩界面,使得煤岩界面更加准确,易于进行工程解释。

    X射线法利用X射线对煤岩穿透性的不同达到识别效果,其原理如图6所示。

    图  6  X射线法原理
    Figure  6.  Principle of X-ray method

    曲星武等[33]为了研究高变质程度煤的结构,利用X射线衍射法进行分析,为优质煤和劣质煤的分选提供了方法。李春山[34]利用X射线荧光法对岩屑进行分析,测得了岩屑中的12种基本元素,为岩性分析提供了支持。杨慧刚等[35]设计了一种基于X射线和机器视觉的煤矸识别分选系统,利用X射线扫描获取煤矸图像,通过图像灰度信息和厚度信息确定分离阈值,提高了煤矸分离精度。耿秀云[36]以X光图像为基础,结合物体的高度确定可行的识别算法,最终实现煤矸石的自动识别。司垒等[37]提出了基于X射线图像和激光点云融合的煤矸识别方法,设计了基于局部熵和全局均差加权的改进OTSU分割算法,提高了X射线图像分割精度和效率,通过提取X射线图像和激光点云的煤矸组合特征进行煤矸识别,准确率达99.00%。

    红外热成像法可分为主动红外激励法和截割闪温法。主动红外激励法利用外部辐射源对煤和岩石的表面或内部进行激励,导致煤和岩石快速升温,利用红外热成像仪监测其温度差异,达到识别效果。截割闪温法原理:滚筒在截割煤岩过程中,截齿表面和煤岩接触面因存在颗粒突起而产生摩擦,在截割瞬间接触面上会产生瞬间高温,即截割闪温,同样利用红外热成像仪可完成煤岩识别。红外热成像法原理如图7所示。

    图  7  红外热成像法原理
    Figure  7.  Principles of infrared thermal imaging

    主动红外激励法最初由桂林电子科技大学[38]提出,利用红外线对煤壁进行主动激励后,通过采集煤壁降温红外热图像提取煤岩温度场特征信息,完成多种类型煤壁煤岩界面的识别。张强等[39]建立了基于红外热成像技术的煤岩界面试验台,利用煤岩试件对5处监测点进行监测分析,得到各个监测点的温度都随着红外射线的激励时长增加而增加,但增长速率各不相同,根据温度变化规律完成煤岩识别。

    对于截割闪温法,C. O. Hargrave等[40]设计了煤岩截割状态红外检测识别装置,并对煤岩穿透效果与识别性能进行了分析。J. C. Ralston等[41]设计了热红外传感装置,基于红外探测原理对煤层的垂直高度进行自动测试,进而确定煤岩界面,实现采煤机自动调高控制。张强等[42-43]建立了采煤机截齿截割试验台,分析得到截齿截割不同煤岩时的温度变化规律及闪温特征,为实现煤岩界面动态识别打下基础。

    综合对比6种基于电磁波的煤岩识别方法,结果见表1。γ射线法在探测距离上具有显著优势,但主动γ射线探测法需要煤层具有一定的放射性,当煤层中的放射性元素含量达不到要求或煤层中的杂质过多时会让该方法失效;被动γ射线探测法虽然解决了放射性元素含量的问题,但是放射性元素含量大大增加,易导致机器运转问题,并严重威胁生命安全。雷达探测法具有识别准确的优点,但由于其信号衰减严重,探测距离短,目前一般应用于薄煤层测厚,并要求煤岩电性差异明显。太赫兹信号法具有探测距离短的缺点,只有在井下环境组成稳定时才能应用。电子共振法应用时介质共振吸收现象明显,但信号衰减严重,探测距离较短且难度较大,所以目前矿井基本摒弃。X射线法穿透性强,成像较清晰,但危害性极大。红外热成像法中,主动红外激励法需耗费大量时间对煤岩进行激励,且在处于高瓦斯的矿井环境中,存在极大的安全隐患;截割闪温法虽耗时较短,但对于截齿多、排布复杂的情况很难实现有效的煤岩识别。

    表  1  6种基于电磁波的煤岩识别方法综合对比
    Table  1.  Comprehensive comparison of six coal and rock recognition methods based on electromagnetic wave
    识别方法优点缺点煤矿井下适用性
    γ射线法探测距离较远对放射性元素含量有要求煤层放射性达标
    雷达探测法识别准确信号衰减严重,探测距离较短介质电性差异明显
    太赫兹信号法透射非极性介质多,可同时获取煤岩的多个光学参数探测距离较短,对环境要求较高矿井环境组成稳定
    电子共振法介质共振吸收现象明显信号衰减严重,探测距离较短目前矿井基本摒弃
    X射线法穿透性强,成像较清晰探测距离较短,危害性较大一般用于煤矸分选
    红外热成像法对井下复杂环境适用性强耗时长矿井瓦斯含量低,截齿少且排布较简单
    下载: 导出CSV 
    | 显示表格

    目前基于电磁波的煤岩识别方法很多,但类似于γ射线这种危害性较大的方法基本已经被淘汰。山西省阳曲县在全国第2次煤预测中,利用电磁波勘探出大致煤地范围,最终确定了煤层厚度。华北科技学院采用探地雷达对开滦(集团)蔚州矿业有限责任公司单侯矿进行测试,在工作面下方0.8~1.2 m发现1条具有明显反射差且走势稳定的分界线,据此确定了最大回采厚度。山西新景矿煤业有限责任公司采用探地雷达测试了煤层厚度、煤岩界面分布和断层探测[44],得出电磁波在均质中传播时规律性衰减且无明显反射特征,在煤岩界面处有明显反射特征,据此识别煤岩界面准确率极高。山西王家岭煤业有限公司采用探地雷达测试综放工作面顶煤厚度[45],误差仅为7%。徐坤等[46]利用雷达在研究区斜井附近垂直布设6条测线,对异常区域范围和埋深进行了精准探测。

    分析了基于电磁波的煤岩识别技术的原理,阐述了γ射线法、雷达探测法、太赫兹信号法、电子共振法、X射线法和红外热成像法6种方法的研究现状,分析了6种方法的优缺点,最后介绍了电磁波在煤岩识别中的应用现状。电磁波回波信息决定着电磁波煤岩识别的准确性,因此,后续研究应对其进行深层次挖掘,此外,可充分利用现场条件,对环境进行多方位剖析,对煤岩特性进行多方位比较分析,提高煤岩识别精度和效率。

  • 图  1   巷道模型

    Figure  1.   Roadway model

    图  2   附壁风筒出风条示意图

    Figure  2.   Wall-attached duct outlet air strip seam

    图  3   不同Lr条件下各断面内风速矢量分布

    Figure  3.   Wind speed vector distribution in each section under different radial air outlet distances Lr conditions

    图  4   不同φ条件下综掘工作面风流分布

    Figure  4.   Air flow distribution of excavation face under different ratios of radial air outlet φ conditions

    图  5   不同Lrφ条件下综掘机司机呼吸带处粉尘质量浓度分布

    Figure  5.   Distribution of dust mass concentration in the breathing zone of excavator driver under different Lr and φ conditions

    图  6   不同Lr条件下φLd之间拟合曲线及拟合公式

    Figure  6.   The fitting curve and formula between φ and Ld under different Lr conditions

    图  7   不同La条件下综掘机司机呼吸带处速度云图

    Figure  7.   Speed cloud at the breathing zone of excavator driver under different axial outlet distance La conditions

    图  8   不同La条件下综掘机司机呼吸带处粉尘质量浓度分布

    Figure  8.   Distribution of dust mass concentration at the breathing zone of the driver under different La conditions

    表  1   不同Lrφ条件下粉尘扩散距离Ld

    Table  1   Dust diffusion distance Ld under different Lr and φ condition

    Lr/m Ld/m
    φ=0.6 φ=0.7 φ=0.8 φ=0.9
    10 9.1 8.9 9.8 10.5
    15 8.3 7.4 7.1 8.2
    20 9.4 8.1 7.0 6.4
    25 12.7 11.6 10.1 6.8
    下载: 导出CSV

    表  2   各断面测点风速

    Table  2   Wind speed at measuring points of each section

    距工作面距离/m A点风速/(m·s−1 B点风速/(m·s−1
    实测值 模拟值 实测值 模拟值
    5 0.48 0.54 0.39 0.45
    10 0.43 0.51 0.36 0.43
    20 1.16 1.32 0.87 0.97
    下载: 导出CSV

    表  3   各断面测点粉尘质量浓度

    Table  3   Dust concentration measuring value of each section

    距工作面距离/m 粉尘质量浓度/(mg·m−3
    3 208.8
    5 63.3
    7 33.6
    下载: 导出CSV
  • [1] 龚晓燕,赵晓莹,杨富强,等. 综掘面尘源动态变化下粉尘场优化的风流调控研究[J]. 煤炭工程,2021,53(2):122-126.

    GONG Xiaoyan,ZHAO Xiaoying,YANG Fuqiang,et al. Wind flow control for optimization of dust field distribution under dynamic change of dust source in fully mechanized heading face[J]. Coal Engineering,2021,53(2):122-126.

    [2] 秦翥. 带式输送机转载点粉尘浓度分布数值模拟[J]. 工矿自动化,2018,44(7):70-74.

    QIN Zhu. Numerical simulation of dust concentration distribution in transfer site of belt conveyor[J]. Industry and Mine Automation,2018,44(7):70-74.

    [3] 龚晓燕,张浩,陈龙,等. 综掘面抽风口调控下的旋流风幕降尘优化[J]. 中国安全科学学报,2023,33(6):56-63.

    GONG Xiaoyan,ZHANG Hao,CHEN Long,et al. Optimization of cyclone air curtain dust control under control of exhaust outlet on fully mechanized excavation face[J]. China Safety Science Journal,2023,33(6):56-63.

    [4] 程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1-20.

    CHENG Weimin,ZHOU Gang,CHEN Lianjun,et al. Research progress and prospect of dust control theory and technology in China's coal mines in the past 20 years[J]. Coal Science and Technology,2020,48(2):1-20.

    [5] 吕英华,察兴鹏,聂文,等. 基于数值模拟的喷雾装置粉尘抑制研究[J]. 煤矿机械,2022,43(11):34-37.

    LYU Yinghua,CHA Xingpeng,NIE Wen,et al. Study on dust suppression of spray device based on numerical simulation[J]. Coal Mine Machinery,2022,43(11):34-37.

    [6] 张义坤. 煤矿综掘面泡沫降尘技术研究与实施[J]. 中国安全科学学报,2012,22(2):151-156.

    ZHANG Yikun. Study on dust control technology with foam in fully mechanized workface of Huoerxinhe Coal Mine[J]. China Safety Science Journal,2012,22(2):151-156.

    [7] 蒋仲安,杨斌,张国梁,等. 高原矿井掘进工作面截割粉尘污染效应及通风控尘参数分析[J]. 煤炭学报,2021,46(7):2146-2157.

    JIANG Zhong'an,YANG Bin,ZHANG Guoliang,et al. Analysis of dust pollution effect of cutting dust and ventilation control parameters at the heading face in plateau mines[J]. Journal of China Coal Society,2021,46(7):2146-2157.

    [8] 秦跃平,张苗苗,崔丽洁,等. 综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J]. 北京科技大学学报,2011,33(7):790-794.

    QIN Yueping,ZHANG Miaomiao,CUI Lijie,et al. Numerical simulation of dust migration and study on dust removal modes with the forced ventilation shunt in a fully mechanized workface[J]. Journal of University of Science and Technology Beijing,2011,33(7):790-794.

    [9] 聂文,程卫民,周刚. 综掘工作面压风气幕形成机理与阻尘效果分析[J]. 煤炭学报,2015,40(3):609-615.

    NIE Wen,CHENG Weimin,ZHOU Gang. Formation mechanism of pressure air curtain and analysis of dust suppression's effects in mechanized excavation face[J]. Journal of China Coal Society,2015,40(3):609-615.

    [10]

    LIU Qiang,NIE Wen,HUA Yun,et al. The effects of the installation position of a multi-radial swirling air-curtain generator on dust diffusion and pollution rules in a fully-mechanized excavation face:a case study[J]. Powder Technology,2018,329:371-385. DOI: 10.1016/j.powtec.2018.01.064

    [11] 陈芳,张设计,马威,等. 综掘工作面压风分流控除尘技术研究与应用[J]. 煤炭学报,2018,43(增刊2):483-489.

    CHEN Fang,ZHANG Sheji,MA Wei,et al. Research and application of the technology of forced ventilation diversion to control and reduce dust in fully mechanized excavation face[J]. Journal of China Coal Society,2018,43(S2):483-489.

    [12] 王建国,王康,樊亦洋. 附壁风筒条缝参数对综掘工作面控尘效果的影响[J]. 煤矿安全,2021,52(6):206-210.

    WANG Jianguo,WANG Kang,FAN Yiyang. Influence of slot parameters of wall-attached air duct on dust control effect of fully mechanized mining face[J]. Safety in Coal Mines,2021,52(6):206-210.

    [13] 王昊,张永亮,撒占友,等. 综掘工作面压抽风量比对多径向涡旋气幕阻尘效果的影响[J]. 矿业安全与环保,2022,49(2):117-121,126.

    WANG Hao,ZHANG Yongliang,SA Zhanyou,et al. Effect of the forced-suction airflow volume ratio on the dust suppression of swirling air curtain in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2022,49(2):117-121,126.

    [14] 龚晓燕,彭高高,宋涛,等. 掘进工作面长压短抽通风出风口风流调控参数研究[J]. 工矿自动化,2021,47(9):45-52.

    GONG Xiaoyan,PENG Gaogao,SONG Tao,et al. Study on air flow control parameters of long-pressure and short-extraction ventilation air outlets in heading face[J]. Industry and Mine Automation,2021,47(9):45-52.

    [15] 陈芳. 综掘工作面分段控风控尘技术研究与应用[J]. 煤炭工程,2019,51(12):106-110.

    CHEN Fang. Research and application of sectional airflow and dust control technology in fully mechanized tunnelling face[J]. Coal Engineering,2019,51(12):106-110.

    [16] 程卫民,王昊,孙彪,等. 综掘面径向分风与压风配比对风幕阻尘的影响[J]. 中国矿业大学学报,2017,46(5):1014-1023.

    CHENG Weimin,WANG Hao,SUN Biao,et al. Effects of ratio of radial partial air volume to pressure air volume on air curtain dust control at fully mechanized working face[J]. Journal of China University of Mining & Technology,2017,46(5):1014-1023.

    [17] 韩敏,王建国,王康. 多抽风筒对综掘面除尘的影响研究[J]. 矿业安全与环保,2022,49(5):114-118.

    HAN Min,WANG Jianguo,WANG Kang. Study on the influence of multiple exhaust pipes on dust removal in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2022,49(5):114-118.

    [18] 王昊,撒占友,王春源,等. 综掘工作面通风条件对径向旋流风幕阻尘效果的影响[J]. 煤矿安全,2022,53(3):186-192.

    WANG Hao,SA Zhanyou,WANG Chunyuan,et al. Influences of ventilation conditions of fully mechanized excavation face on dust-resistance effect of radial swirling air curtain[J]. Safety in Coal Mines,2022,53(3):186-192.

    [19] 杨泽安,王义亮. 综掘工作面湿式除尘条件下尘雾耦合数值模拟[J]. 煤矿安全,2021,52(11):170-175.

    YANG Ze'an,WANG Yiliang. Numerical simulation of dust and spray coupling under wet dust removal condition in fully mechanized excavation face[J]. Safety in Coal Mines,2021,52(11):170-175.

    [20] 魏星,高丹红,张国宝. 旋流气幕系统对综掘面控尘流场的影响研究[J]. 矿业研究与开发,2019,39(12):109-115.

    WEI Xing,GAO Danhong,ZHANG Guobao. The impact of swirling air curtain system on the dust control flow field in the fully-mechanized excavation face[J]. Mining Research and Development,2019,39(12):109-115.

    [21] 王磊,程煜,徐荣萧. 基于EDEM仿真的煤岩截割产尘规律研究[J]. 煤矿安全,2023,54(1):22-28.

    WANG Lei,CHENG Yu,XU Rongxiao. Mechanism of dust production during coal and rock cutting based on EDEM[J]. Safety in Coal Mines,2023,54(1):22-28.

    [22] 邹常富. 岩巷产尘规律及控风除尘技术研究[J]. 煤炭技术,2021,40(4):77-79.

    ZOU Changfu. Research on dust generation law of rock drift and wind control and dust removal technology[J]. Coal Technology,2021,40(4):77-79.

    [23] 侯树宏,郝军,李腾龙,等. 综掘工作面通风控尘参数匹配关系研究及应用[J]. 煤炭技术,2022,41(1):166-169.

    HOU Shuhong,HAO Jun,LI Tenglong,et al. Research and application of ventilation and dust control parameters matching in fully mechanized driving face[J]. Coal Technology,2022,41(1):166-169.

    [24] 张义坤,蒋仲安,孙雅茹. 附壁风筒对掘进工作面通风除尘的促进作用[J]. 煤矿安全,2017,48(12):161-163.

    ZHANG Yikun,JIANG Zhong'an,SUN Yaru. Promotion effect of dust removal in heading face by ventilation duct with coanda effect[J]. Safety in Coal Mines,2017,48(12):161-163.

  • 期刊类型引用(3)

    1. 张科星. 地面高压酸化水力压裂消除坚硬覆岩悬顶结构的技术. 山西焦煤科技. 2024(06): 19-22 . 百度学术
    2. 程士宜. 冲击压裂下钻孔极限力学行为规律研究与应用. 建井技术. 2024(05): 62-65 . 百度学术
    3. 王振. 高瓦斯低渗煤层压裂增透注热促抽技术研究. 煤. 2024(12): 63-66+69 . 百度学术

    其他类型引用(2)

图(8)  /  表(3)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  83
  • PDF下载量:  61
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-06-03
  • 修回日期:  2023-12-24
  • 网络出版日期:  2024-01-30
  • 刊出日期:  2024-01-30

目录

/

返回文章
返回