留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿巷道七自由度喷浆机器人轨迹规划与跟踪控制

程欢 邓立营

程欢,邓立营. 煤矿巷道七自由度喷浆机器人轨迹规划与跟踪控制[J]. 工矿自动化,2024,50(1):115-121.  doi: 10.13272/j.issn.1671-251x.2023050057
引用本文: 程欢,邓立营. 煤矿巷道七自由度喷浆机器人轨迹规划与跟踪控制[J]. 工矿自动化,2024,50(1):115-121.  doi: 10.13272/j.issn.1671-251x.2023050057
CHENG Huan, DENG Liying. Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway[J]. Journal of Mine Automation,2024,50(1):115-121.  doi: 10.13272/j.issn.1671-251x.2023050057
Citation: CHENG Huan, DENG Liying. Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway[J]. Journal of Mine Automation,2024,50(1):115-121.  doi: 10.13272/j.issn.1671-251x.2023050057

煤矿巷道七自由度喷浆机器人轨迹规划与跟踪控制

doi: 10.13272/j.issn.1671-251x.2023050057
基金项目: 新疆国家重大工程科研计划项目(EQ057/FY056)。
详细信息
    作者简介:

    程欢(1999—),女,重庆人,硕士研究生,研究方向为多自由度喷浆机器人协调控制,E-mail:15223498229@163.com

  • 中图分类号: TD421

Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway

  • 摘要: 针对煤矿巷道喷浆机器人施工过程中存在的动作不连续、位置误差大、稳定性低等问题,提出了一种煤矿巷道七自由度喷浆机器人轨迹规划与跟踪控制方法。根据喷浆机器人静止时工作臂的运动范围和喷枪沿巷道走向的喷浆长度,将巷道划分为若干待喷截面,并规划机器人在每一截面间的移动轨迹和各截面上的工作臂运动轨迹,从而保证机器人在喷浆过程中动作连续。建立了喷浆机器人运动学模型,先采用三次多项式插值法对机器人移动轨迹进行规划,再通过模型预测控制算法对三次多项式插值生成的参考轨迹进行跟踪控制,实现机器人在巷道内精确、平稳移动。根据标准的D−H参数法建立了工作臂运动学模型,采用3−5−3分段多项式插值法对机器人在待喷截面的工作臂运动轨迹进行规划,使工作臂在喷浆过程中具有连续的加速度。仿真结果表明,喷浆机器人移动过程中最大位置误差为0.07 m,最大方向角误差仅为0.99 rad,移动速度整体稳定,且速度发生波动后能快速回到稳定状态,满足机器人移动准确、平稳的要求;工作臂运动过程中,喷浆轨迹、关节变量变化、关节速度和加速度曲线整体连续、平滑,满足喷浆动作连续、稳定的要求。

     

  • 图  1  喷浆机器人组成

    Figure  1.  Composition of shotcrete robot

    图  2  工作臂关节设置

    Figure  2.  Working arm joint setup

    图  3  喷浆机器人在巷道中的轨迹

    Figure  3.  Trajectory of shotcrete robot in roadway

    图  4  喷浆机器人工作流程

    Figure  4.  Work flow of shotcrete robot

    图  5  喷浆机器人运动学模型

    Figure  5.  Kinematics model of shotcrete robot

    图  6  喷枪参考轨迹

    Figure  6.  Airbrush reference trajectory

    图  7  机器人位置跟踪曲线

    Figure  7.  Robot position tracking curve

    图  8  机器人方向角跟踪曲线

    Figure  8.  Robot direction angle tracking curve

    图  9  机器人移动速度控制曲线

    Figure  9.  Robot moving speed control curve

    图  10  工作臂运动轨迹

    Figure  10.  Working arm motion trajectory

    图  11  工作臂关节变量变化曲线

    Figure  11.  The change curves of working arm joint variable

    图  12  关节3速度曲线

    Figure  12.  Velocity curve of joint 3

    图  13  关节3加速度曲线

    Figure  13.  Acceleration curve of joint 3

    表  1  工作臂D−H参数

    Table  1.   D-H parameters of working arm

    关节j $ {{\varOmega}}_{j} $/mm $ {{\alpha }}_{j}$/(°) $ {{d}}_{j} $/mm $ {{\vartheta }}_{j} $/(°)
    1 0 90 0 $ {{\vartheta }}_{1} $
    2 1 000 −90 0 $ {{\vartheta }}_{2} $
    3 0 90 $ {d}_{1} $ 0
    4 0 −90 $ {d}_{2} $ 0
    5 0 0 1 000 $ {{\vartheta }}_{3} $
    6 0 −90 $ {d}_{3} $ 0
    7 0 0 1 000 $ {{\vartheta }}_{4} $
    下载: 导出CSV
  • [1] 袁亮,薛俊华,刘泉声,等. 煤矿深部岩巷围岩控制理论与支护技术[J]. 煤炭学报,2011,36(4):535-543.

    YUAN Liang,XUE Junhua,LIU Quansheng,et al. Surrounding rock stability control theory and support technique in deep rock roadway for coal mine[J]. Journal of China Coal Society,2011,36(4):535-543.
    [2] 邓镓敏,王步康,郭治富. 锚护机器人工作臂的轨迹规划[J]. 煤炭技术,2021,40(12):187-189.

    DENG Jiamin,WANG Bukang,GUO Zhifu. Research of trajectory planning for rock bolting robot's manipulator[J]. Coal Technology,2021,40(12):187-189.
    [3] 刘送永,徐海乔,张德义,等. 多自由度自动喷浆机械臂运动分析及路径优化[J]. 煤炭学报,2020,45(增刊2):1079-1088.

    LIU Songyong,XU Haiqiao,ZHANG Deyi,et al. Motion analysis and path optimization of multi-DOF automatic shotcrete manipulator[J]. Journal of China Coal Society,2020,45(S2):1079-1088.
    [4] 肖振楠,申燚,倪辰旖. 六自由度机械手的运动轨迹规划与仿真[J]. 机床与液压,2018,46(15):58-63.

    XIAO Zhennan,SHEN Yi,NI Chenyi. Kinematics trajectory planning and simulation of six degrees of freedom manipulator[J]. Machine Tool & Hydraulics,2018,46(15):58-63.
    [5] LIU Gangfeng,SUN Xianchao,LIU Yubin,et al. Automatic spraying motion planning of a shotcrete manipulator[J]. Intelligent Service Robotics,2022,15(1):115-128. doi: 10.1007/s11370-021-00405-3
    [6] CHEN Gang,LIU Dan,WANG Yifan,et al. Path planning method with obstacle avoidance for manipulators in dynamic environment[J]. International Journal of Advanced Robotic Systems,2018,15(6). DOI: 10.1177/1729881418820223.
    [7] LIU Yibo,XIAO Fan,TONG Xiliang,et al. Manipulator trajectory planning based on work subspace division[J]. Concurrency and Computation:Practice and Experience, 2022,34(5). DOI: 10.1002/cpe.6710.
    [8] 刘俊辉,周伟. 基于三次B样条的六自由度液压机械臂轨迹规划[J]. 机床与液压,2022,50(9):75-80. doi: 10.3969/j.issn.1001-3881.2022.09.013

    LIU Junhui,ZHOU Wei. Trajectory planning of 6-DOF hydraulic manipulator based on cubic B-spline[J]. Machine Tool & Hydraulics,2022,50(9):75-80. doi: 10.3969/j.issn.1001-3881.2022.09.013
    [9] 谢斌,秦觅,宋迪,等. 八自由度全自动隧道喷浆机器人系统设计[J]. 华中科技大学学报(自然科学版),2020,48(1):115-120.

    XIE Bin,QIN Mi,SONG Di,et al. Design of automatic tunnel shotcrete robotic system for 8-DOF[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2020,48(1):115-120.
    [10] 许万,曹松,罗西,等. 双轮差速移动机器人轨迹跟踪混合控制算法研究[J]. 组合机床与自动化加工技术,2018(3):78-83.

    XU Wan,CAO Song,LUO Xi,et al. Study on hybrid control algorithm for trajectory tracking of dual-wheeled differential speed mobile robot[J]. Modular Machine Tool & Automatic Manufacturing Technique,2018(3):78-83.
    [11] YANG Libo,GUO Mei,ARDASHIR M,et al. Taylor series-based fuzzy model predictive control for wheeled robots[J]. Mathematics,2022,10(14). DOI: 10.3390/math10142498.
    [12] CHEON H,KIM B K. Online bidirectional trajectory planning for mobile robots in state-time space[J]. IEEE Transactions on Industrial Electronics,2019,66(6):4555-4565. doi: 10.1109/TIE.2018.2866039
    [13] GB 50086—2015 岩土锚杆与喷射混凝土支护工程技术规范[S].

    GB 50086-2015 Technical code for engineering of ground anchorages and shotcrete support[S].
    [14] ALMASRI E,UYGUROGLU M K. Modeling and trajectory planning optimization for the symmetrical multiwheeled omnidirectional mobile robot[J]. Symmetry,2021,13(6). DOI: 10.3390/sym13061033.
    [15] WANG Lei,WU Qing,LIN Fei,et al. A new trajectory-planning beetle swarm optimization algorithm for trajectory planning of robot manipulators[J]. IEEE Access,2019,7:154331-154345. doi: 10.1109/ACCESS.2019.2949271
    [16] 崔振,翟陆阳,赵志强. 基于MPC的无人驾驶车辆轨迹跟踪算法[J]. 汽车实用技术,2022,47(21):43-46.

    CUI Zhen,ZHAI Luyang,ZHAO Zhiqiang. Driverless vehicle trajectory tracking algorithm based on MPC[J]. Automobile Applied Technology,2022,47(21):43-46.
    [17] CHOI Y,LEE W,KIM Y,et al. A variable-sampling time model predictive control algorithm for improving path-tracking performance of a vehicle[J]. Sensors,2021,21(10). DOI: 10.3390/s21206845.
    [18] Peter Corke. 机器人学、机器视觉与控制——MATLAB算法基础[M]. 刘荣,译. 北京:电子工业出版社,2016.

    CORKE P. Robotics,vision and control:fundamental algorithms in MATLAB[M]. LIU Rong,Translate. Beijing:Publishing House of Electronics Industry,2016.
    [19] 杨辰光,李智军,许扬. 机器人仿真与编程技术[M]. 北京:清华大学出版社,2018.

    YANG Chenguang,LI Zhijun,XU Yang. Robot simulation and programming technology[M]. Beijing:Tsinghua University Press,2018.
    [20] 任军,吴正虎,曹秋玉. 基于MATLAB Robotics工具箱的ER50机器人轨迹规划与仿真[J]. 机械设计与制造,2022(8):33-36.

    REN Jun,WU Zhenghu,CAO Qiuyu. Trajectory planning and simulation of ER50 manipulator based on MATLAB robotics toolbox[J]. Machinery Design & Manufacture,2022(8):33-36.
    [21] 邓镓敏,郭治富,王步康. 锚护机器人工作臂的时间最优轨迹规划[J]. 煤炭技术,2022,41(5):172-174.

    DENG Jiamin,GUO Zhifu,WANG Bukang. Time-optimal trajectory planning of rock bolting robot[J]. Coal Technology,2022,41(5):172-174.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  68
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2024-01-24
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回