液压支架电液控制系统总线通信故障检测与诊断方法

Fault detection and diagnosis method for bus communication in hydraulic support electro-hydraulic control system

  • 摘要: 通信系统是综采工作面液压支架电液控制系统信息传递的通道与桥梁,目前多采用CAN总线作为通信总线,易受井下复杂电磁环境的干扰,导致支架控制器内部通信硬件出现故障,造成控制器“失联”现象,且CAN总线通信系统采用多主通信模式,单台控制器“失联”将导致整个电液控制系统无法正常工作,造成安全隐患。设计了CAN通信保护电路,可使通信系统在较大负载情况下稳定运行,在复杂环境中具有较强的抗干扰性。基于CAN总线通信协议,结合令牌环网思想,提出了CAN总线通信故障检测与诊断方法,通过合理设计数据的帧结构与故障检测方式,弥补了CAN总线通信模式下节点丢失时难以定位的缺陷,并将增加数据长度对传输负载的影响降到最低,确保良好的通信性能。以2台端头控制器配合6台液压支架控制器组成环网,通过上位机不定时下发命令模拟井下实际操作时总线真实的负载情况,对液压支架电液控制系统总线通信故障检测与诊断方法进行实验验证,结果表明:该方法对系统负载率的影响较低,不会影响系统的正常运行;当出现故障节点时,可在300 ms内检测出故障控制器并向全工作面报警,故障排除率达100%。

     

    Abstract: The communication system is the channel and bridge for information transmission in the hydraulic support electro-hydraulic control system of the fully mechanized mining face. Currently, CAN bus is commonly used as the communication bus. It is susceptible to interference from the complex electromagnetic environment underground, resulting in internal communication hardware failures of the support controller and causing the phenomenon of "disconnection" of the controller. In addition, the CAN bus communication system adopts a multi master communication mode. The disconnection of a single controller will cause the entire electro-hydraulic control system to malfunction, posing a safety hazard. A CAN communication protection circuit has been designed to ensure stable operation of the communication system under high load conditions and strong anti-interference capability in complex environments. A fault detection and diagnosis method for CAN bus communication is proposed based on the CAN bus communication protocol combined with the token ring network concept. By designing the frame structure and fault detection method of data reasonably, the defect of difficult positioning of nodes when lost in CAN bus communication mode is compensated. The impact of increasing data length on transmission load is minimized to ensure good communication performance. Two end controllers are combined with six hydraulic support controllers to form a ring network. The upper computer issues commands from time to time to simulate the actual load situation of the bus during underground operation. The experimental verification of the bus communication fault detection and diagnosis method for the hydraulic support electro-hydraulic control system is carried out. The results show that this method has a low impact on the system load rate and will not affect the normal operation of the system. When a faulty node occurs, the faulty controller can be detected within 300 ms and an alarm can be sent to the entire working face, with a fault elimination rate of 100%.

     

/

返回文章
返回