煤层液态CO2相变致裂半径预测研究

王长禄, 彭然, 郑义, 李伟, 姚海飞

王长禄,彭然,郑义,等. 煤层液态CO2相变致裂半径预测研究[J]. 工矿自动化,2023,49(10):110-117. DOI: 10.13272/j.issn.1671-251x.2023040076
引用本文: 王长禄,彭然,郑义,等. 煤层液态CO2相变致裂半径预测研究[J]. 工矿自动化,2023,49(10):110-117. DOI: 10.13272/j.issn.1671-251x.2023040076
WANG Changlu, PENG Ran, ZHENG Yi, et al. Research on the prediction of liquid CO2 phase transition cracking radius in coal seams[J]. Journal of Mine Automation,2023,49(10):110-117. DOI: 10.13272/j.issn.1671-251x.2023040076
Citation: WANG Changlu, PENG Ran, ZHENG Yi, et al. Research on the prediction of liquid CO2 phase transition cracking radius in coal seams[J]. Journal of Mine Automation,2023,49(10):110-117. DOI: 10.13272/j.issn.1671-251x.2023040076

煤层液态CO2相变致裂半径预测研究

基金项目: 国家自然科学基金项目(52130409);天地科技股份有限公司科技创新创业资金专项项目(2021-2-TD-MS001)。
详细信息
    作者简介:

    王长禄(1993—),男,辽宁丹东人,硕士,主要研究方向为安全评价及瓦斯灾害防治,E-mail:changlu202303@163.com

  • 中图分类号: TD712

Research on the prediction of liquid CO2 phase transition cracking radius in coal seams

  • 摘要: 预测致裂半径是确定液态CO2相变致裂增透瓦斯抽采技术布孔间距的前提,直接影响瓦斯抽采效果。现有预测方法大多基于单因素。为掌握多因素对液态CO2相变致裂半径的影响规律,有效预测布孔间距,采用ANSYS/LS−DYNA数值模拟软件,结合正交试验,开展了煤层液态CO2相变致裂半径预测研究。数值模拟结果表明:影响液态CO2相变致裂半径的因素主次顺序为地应力>瓦斯压力>煤体坚固性系数;致裂半径随地应力增大而减小,随瓦斯压力和煤体坚固性系数增大而增大,且呈线性关系。对数值模拟结果进行多元回归分析,建立了基于地应力、瓦斯压力及煤体坚固性系数3组不同因素耦合条件下的液态CO2相变致裂半径预测模型。在煤矿现场进行工业性试验,基于预测模型计算结果设置抽采钻孔,采用压力指标法对瓦斯抽采效果进行测试分析,结果表明:液态CO2相变致裂孔两侧观测孔的瓦斯压力随时间增加呈递减趋势,且抽采初期距致裂孔越远,则压力越大,与理论分析及数值模拟结果一致;液态CO2相变有效致裂范围与预测结果基本相符;观测孔瓦斯抽采体积分数较自然抽采孔提高73.4%,瓦斯抽采效率显著提高。
    Abstract: Predicting cracking radius is a prerequisite for determining the holes spacing of gas extraction technology by liquid CO2 phase transition cracking and permeability improvement, which directly affects the gas extraction effect. Most existing prediction methods are based on single factor analysis. In order to grasp the influence of multiple factors on the radius of liquid CO2 phase transition cracking and effectively predict the spacing between holes, ANSYS/LS-DYNA numerical simulation software is used to carry out the research on predicting the radius of coal seam liquid CO2 phase transition cracking combing with orthogonal experiments. The numerical simulation results indicate that the order of factors affecting the radius of liquid CO2 phase transition cracking is ground stress>gas pressure>coal solidity coefficient. The cracking radius decreases with the increase of stress, and increases with the increase of gas pressure and coal solidity coefficient with a linear relationship. A multiple regression analysis is conducted on the numerical simulation results. A prediction model for the radius of liquid CO2 phase transition cracking is established based on three different coupling conditions of ground stress, gas pressure, and coal solidity coefficient. Industrial experiments are conducted on the coal mine site. Extraction boreholes are set up based on the predicted model calculation results. The pressure index method is used to test and analyze the gas extraction effect. The results show the following points. The gas pressure in the observation holes on both sides of the liquid CO2 phase transition cracking hole shows a decreasing trend with time. The farther away from the cracking hole in the initial stage of extraction, the greater the gas pressure. It is consistent with theoretical analysis and numerical simulation results. The effective cracking range of liquid CO2 phase transition is basically consistent with the predicted results. The gas volume fraction in the observation hole is 73.4% higher than that in the natural extraction hole, and the gas extraction efficiency is significantly improved.
  • 图  1   液态CO2相变爆破裂隙发育分布

    Figure  1.   Fracture development distribution by liquid CO2 phase transition blasting

    图  2   液态CO2相变致裂数值模型

    Figure  2.   Numerical model of liquid CO2 phase transition cracking

    图  3   液态CO2相变致裂模拟演化过程

    Figure  3.   Simulated evolution process of liquid CO2 phase transition cracking

    图  4   三因素耦合作用下的致裂效果

    Figure  4.   Cracking effect under three factors coupling

    图  5   各因素对液态CO2相变致裂半径的影响

    Figure  5.   Influence of various factors on liquid CO2 phase transition cracking radius

    图  6   现场工业性试验布孔方式

    Figure  6.   Borehole arrangement in industrial field test

    图  7   观测孔瓦斯压力变化

    Figure  7.   Gas pressure change of observation borehole

    图  8   钻孔瓦斯体积分数对比

    Figure  8.   Gas concentration comparison of different borehole

    表  1   煤体材料参数

    Table  1   Coal material parameters

    密度/
    (g·cm−3
    弹性模
    量/MPa
    泊松比 抗拉强
    度/MPa
    抗压强
    度/MPa
    黏聚力/
    MPa
    1.54 1.74 0.3 0.84 2.2 2.5
    下载: 导出CSV

    表  2   模拟方案正交设计

    Table  2   Orthogonal design of simulation scheme

    组号地应力/MPa瓦斯压力/MPa煤体坚固性系数空白列
    160.20.50
    260.30.70
    360.40.80
    480.20.70
    580.30.80
    680.40.50
    7100.20.80
    8100.30.50
    9100.40.70
    下载: 导出CSV

    表  3   致裂半径极差分析

    Table  3   Range analysis of cracking radius

    指标地应力瓦斯压力煤体坚固性系数空白列
    均值12.5182.1172.1822.234
    均值22.2342.2342.2442.234
    均值31.9502.3502.2752.234
    极差0.5680.2330.0930
    下载: 导出CSV

    表  4   正交设计方差分析

    Table  4   Variance analysis of orthogonal design

    指标地应力瓦斯压力煤体坚固性系数
    偏差平方和 0.484 0.082 0.013
    自由度 2 2 2
    F比值 3.344 0.566 0.090
    显著度 置信度90% * * *
    置信度95% * * *
    置信度99% * * *
     注:*表示具有较高显著度。
    下载: 导出CSV
  • [1] 陈浮,于昊辰,卞正富,等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(6):1808-1820. DOI: 10.13225/j.cnki.jccs.2021.0368

    CHEN Fu,YU Haochen,BIAN Zhengfu,et al. How to handle the crisis of coal industry in China under the vision of carbon neutrality[J]. Journal of China Coal Society,2021,46(6):1808-1820. DOI: 10.13225/j.cnki.jccs.2021.0368

    [2]

    NILSON R H,PROFFER W J,DUFF R E. Modelling of gas-driven fractures induced by propellant combustion within a borehole[J]. International Journal of Rock Mechanic and Mining Sciences & Geomechanics Abstracts,1985,22(1):3-19.

    [3] 黄荣樽. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发,1981,46(5):62-74.

    HUANG Rongzun. Cracking and propagation of hydraulic fracturing fractures[J]. Petroleum Expoloration and Development,1981,46(5):62-74.

    [4] 文虎,李珍宝,王振平,等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J]. 煤炭学报,2016,41(11):2793-2799.

    WEN Hu,LI Zhenbao,WANG Zhenping,et al. Experiment on the liquid CO2 fracturing process for increasing permeability and the characteristics of crack propagation in coal seam[J]. Journal of China Coal Society,2016,41(11):2793-2799.

    [5] 张东明,白鑫,尹光志,等. 低渗煤层液态CO2相变射孔破岩及裂隙扩展力学机理[J]. 煤炭学报,2018,43(11):3154-3168.

    ZHANG Dongming,BAI Xin,YIN Guangzhi,et al. Mechanism of breaking and fracture expansion of liquid CO2 phase change jet fracturing in low-permeability coal seam[J]. Journal of China Coal Society,2018,43(11):3154-3168.

    [6] 董庆祥,王兆丰,韩亚北,等. 液态CO2相变致裂的TNT当量研究[J]. 中国安全科学学报,2014,24(11):84-88.

    DONG Qingxiang,WANG Zhaofeng,HAN Yabei,et al. Research on TNT equivalent of liquid CO2 phase-transition fracturing[J]. China Safety Science Journal,2014,24(11):84-88.

    [7] 周西华,门金龙,宋东平,等. 煤层液态CO2爆破增透促抽瓦斯技术研究[J]. 中国安全科学学报,2015,25(2):60-65.

    ZHOU Xihua,MEN Jinlong,SONG Dongping,et al. Research on increasing coal seam permeability and promoting gas drainage with liquid CO2 blasting[J]. China Safety Science Journal,2015,25(2):60-65.

    [8] 赵宝友,王海东. 煤体坚固性系数和瓦斯压力对煤层深孔爆破增透的影响[J]. 爆破,2014,31(1):25-31. DOI: 10.3963/j.issn.1001-487X.2014.01.006

    ZHAO Baoyou,WANG Haidong. Impact of coal strength coefficient and methane gas pressure on permeability enhancement of coal seam induced by long-hole blasting technology[J]. Blasting,2014,31(1):25-31. DOI: 10.3963/j.issn.1001-487X.2014.01.006

    [9] 孙可明,辛利伟,吴迪. 超临界CO2气爆煤体致裂机理实验研究[J]. 爆炸与冲击,2018,38(2):302-308. DOI: 10.11883/bzycj-2016-0230

    SUN Keming,XIN Liwei,WU Di. Experimental study on fracture mechanism of coal caused by supercritical CO2 explosion[J]. Explosion and Shock Waves,2018,38(2):302-308. DOI: 10.11883/bzycj-2016-0230

    [10] 贾进章,李斌,王东明. 煤层液态CO2相变致裂半径范围的影响因素研究[J]. 中国安全科学学报,2021,31(4):57-63.

    JIA Jinzhang,LI Bin,WANG Dongming. Study on influencing factors of cracking radius range caused by liquid CO2 phase transition in coal seams[J]. China Safety Science Journal,2021,31(4):57-63.

    [11] 袁海梁,刘孝义,陈少波,等. 基于SPH算法的CO2相变破岩数值模拟[J]. 工程爆破,2023,29(1):62-68.

    YUAN Hailiang,LIU Xiaoyi,CHEN Shaobo,et al. Numerical simulation of CO2 phase change rock breaking based on SPH algorithm[J]. Engineering Blasting,2023,29(1):62-68.

    [12] 李连崇,赵瑜. 基于双应变胡克模型的岩石非线性弹性行为分析[J]. 岩石力学与工程学报,2012,31(10):2119-2126. DOI: 10.3969/j.issn.1000-6915.2012.10.018

    LI Lianchong,ZHAO Yu. Investigation on nonlinear elastic behaviour of rocks based on a two-part Hooke's model[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(10):2119-2126. DOI: 10.3969/j.issn.1000-6915.2012.10.018

    [13] 刘保县,黄敬林,王泽云,等. 单轴压缩煤岩损伤演化及声发射特性研究[J]. 岩石力学与工程学报,2009,28(增刊1):3234-3238.

    LIU Baoxian,HUANG Jinglin,WANG Zeyun,et al. Study on damage evolution and acoustic emission character of coal-rock under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S1):3234-3238.

    [14]

    HAO Yan,ZHANG Jixiong,ZHOU Nan,et al. Staged numerical simulations of supercritical CO2 fracturing of coal seams based on the extended finite element method[J]. Journal of Engineering,2019,21(3):275-283.

    [15] 高金明,曾丹,孙磊,等. 新型发射药爆炸TNT当量系数的实验研究[J]. 爆炸与冲击,2021,41(10):45-53.

    GAO Jinming,ZENG Dan,SUN Lei,et al. Experimental study on TNT equivalent coefficients for two new kinds of propellants[J]. Explosion and Shock Waves,2021,41(10):45-53.

    [16]

    YIN Siyu,WU Shaopeng,LIU Mingbo,et al. Study on influencing factors of unconfined penetration test based on orthogonal design[J]. Arabian Journal of Geosciences,2021,14(2):2-12.

    [17] 安朝峰,李树刚,林海飞,等. 煤吸附甲烷的影响因素敏感性正交试验[J]. 煤矿安全,2015,46(2):1-4. DOI: 10.13347/j.cnki.mkaq.2015.02.001

    AN Zhaofeng,LI Shugang,LIN Haifei,et al. Orthogonal experiment on sensitivity of impact factors in coal adsorbing methane[J]. Safety in Coal Mines,2015,46(2):1-4. DOI: 10.13347/j.cnki.mkaq.2015.02.001

    [18] 刘立忠,郭娜,马程程,等. 基于正交试验法的低温SCR锰基催化剂制备参数优化[J]. 安全与环境学报,2013,13(5):72-76.

    LIU Lizhong,GUO Na,MA Chengcheng,et al. Approach to optimizing the preparation parameters of SCR low temperature catalyst based on manganese through orthogonal experiment[J]. Journal of Safety and Environment,2013,13(5):72-76.

    [19] 郭军,金彦,王帆,等. 基于Logistic回归分析的煤自燃多级预警方法研究[J]. 中国安全生产科学技术,2022,18(2):88-93.

    GUO Jun,JIN Yan,WANG Fan,et al. Research on multi-level warning method of coal spontaneous combustion based on Logistic regression analysis[J]. Journal of Safety Science and Technology,2022,18(2):88-93.

    [20] 宁奕冰,唐辉明,张勃成,等. 基于正交设计的岩石相似材料配比研究及底摩擦物理模型试验应用[J]. 岩土力学,2020,41(6):2009-2020.

    NING Yibing,TANG Huiming,ZHANG Bocheng,et al. Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests[J]. Rock and Soil Mechanics,2020,41(6):2009-2020.

    [21] 邹永洺. 基于示踪气体法的覆岩“竖三带”测定[J]. 煤矿安全,2019,50(5):7-10. DOI: 10.13347/j.cnki.mkaq.2019.05.002

    ZOU Yongming. "Vertical three zones" determination of overburden based on tracer gas method[J]. Safety in Coal Mines,2019,50(5):7-10. DOI: 10.13347/j.cnki.mkaq.2019.05.002

  • 期刊类型引用(6)

    1. 侯博. 硬岩桩基成孔技术研究. 凿岩机械气动工具. 2025(01): 147-149 . 百度学术
    2. 陈立新,付玉平,李川田. 多煤层重复采动条件下大巷底鼓破坏规律研究. 能源与节能. 2025(02): 59-63 . 百度学术
    3. 刘静波. 重复采动下采场围岩应力响应特征研究. 山东煤炭科技. 2024(09): 112-116+127 . 百度学术
    4. 解嘉豪,崔峰,韩刚,苌玉,刘虎,郝晓琦. 深埋煤层临空面开采覆岩结构失稳机理与防治技术. 西安科技大学学报. 2024(06): 1050-1059 . 百度学术
    5. 王雪江,陈虎斌. 开拓煤业兼并重组原主扇匹配性分析及主扇选型研究. 当代化工研究. 2022(13): 80-82 . 百度学术
    6. 冯超. 矿井通风系统优化及主扇改造技术研究. 当代化工研究. 2022(19): 176-178 . 百度学术

    其他类型引用(5)

图(8)  /  表(4)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  55
  • PDF下载量:  16
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-10-13
  • 网络出版日期:  2023-10-24
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回