Short circuit transient power analysis of hybrid intrinsically safe circuit
-
摘要: 目前针对本安电路本安特性的研究大多以IEC火花实验装置为实验平台,仅对单一电容电路或电感电路的放电特性进行分析,存在适用性差、实验条件要求高等问题,缺少对混合型本安电路本安特性的研究。针对该问题,在GB/T 3836.4—2010《爆炸性环境 第4部分:由本质安全型“i”保护的设备》的基础上,以截流型保护方式下的混合型电路为实验对象进行短路瞬态能量实验,通过分析短路瞬态能量释放过程,建立了短路瞬态能量数学模型,分析了等效数学模型中电容、电感、电源电压和保护时间对短路瞬态能量的影响。Matlab仿真结果表明:随着电容和电感的增大,短路瞬态能量会逐渐增大,最后趋于一个稳定值;增大电源电压会显著增加短路瞬态能量;缩短动作保护时间可有效降低瞬态能量,但只有当保护时间小于临界时间时其作用才明显。基于短路瞬态能量数学模型开发了本安电源,进行了短路实验。实验结果表明:短路电流和电压波形与理论分析基本吻合,短路瞬态能量为33.22 μJ,符合本安要求,可为本安电源的设计提供参考。Abstract: Currently, research on the intrinsically safe features of intrinsically safe circuits mostly relies on the IEC spark experimental device as the experimental platform. The research only analyzes the discharge features of a single capacitor or inductance circuit. There are problems such as poor applicability and high requirements for experimental conditions. There is a lack of research on the intrinsically safe features of hybrid intrinsically safe circuits. To solve this problem, based on GB/T 3836.4-2010 Explosive Atmospheres - Part 4: Equipment Protected by Intrinsic safety Type "i", a short circuit transient energy experiment is carried out with the hybrid circuit under the cutoff type protection mode as the experimental object. By analyzing the release process of short circuit transient energy, a mathematical model of short circuit transient energy is established. The paper analyzes the effects of capacitance, inductance, power supply voltage, and protection time on short circuit transient energy in the equivalent mathematical model. The Matlab simulation results show that as the capacitance and inductance increase, the transient energy of the short circuit will gradually increase and eventually approach a stable value. Increasing the power supply voltage will significantly increase the short circuit transient energy. Shortening the action protection time can effectively reduce transient energy. But its effect is only significant when the protection time is less than the critical time. An intrinsically safe power supply is developed based on a mathematical model of short circuit transient energy. The short circuit experiments are conducted. The experimental results show that the waveform of short circuit current and voltage is basically consistent with theoretical analysis. The transient energy of short circuit is 33.22 μJ, which meets intrinsic safety requirements and can provide a reference for the design of intrinsically safe power supplies.
-
-
-
[1] 孟庆海,田媛. 本质安全电路模拟储能元件潜在危险性分析及其本质安全判据[J]. 电工技术学报,2022,37(3):676-685. MENG Qinghai,TIAN Yuan. Analysis of potential hazards of analog energy storage components in the intrinsic safety circuits and their intrinsic safety criteria[J]. Transactions of China Electrotechnical Society,2022,37(3):676-685.
[2] 景国勋,刘孟霞. 2015—2019年我国煤矿瓦斯事故统计与规律分析[J]. 安全与环境学报,2022,22(3):1680-1686. JING Guoxun,LIU Mengxia. Statistics and analysis of coal mine gas accidents in China from 2015 to 2019[J]. Journal of Safety and Environment,2022,22(3):1680-1686.
[3] 赵永红. 容性本安电路放电模型及放电特性分析[J]. 煤炭工程,2021,53(6):172-175. ZHAO Yonghong. Discharge model and characteristic analysis of capacitive intrinsic safety circuit[J]. Coal Engineering,2021,53(6):172-175.
[4] 井莉楠. 本质安全电路电弧放电特性与非爆炸检测方法的研究[D]. 焦作: 河南理工大学, 2007. JING Linan. The research on characteristic of arc discharge of intrinsically safe circuits and non-explosion detecting method[D]. Jiaozuo: Henan Polytechnic University, 2007.
[5] 黄鹤松,陈曦,田成金,等. 一种高性能矿用本质安全型电源设计[J]. 工矿自动化,2019,45(2):18-23. HUANG Hesong,CHEN Xi,TIAN Chengjin,et al. Design of a high-performance mine-used intrinsically safe power supply[J]. Industry and Mine Automation,2019,45(2):18-23.
[6] UBER C,HILBERT M,FELGNER A,et al. Electrical discharges caused by opening contacts in an ignitable atmosphere-Part I:Analysis of electrical parameters at ignition limits[J]. Journal of Loss Prevention in the Process Industries,2019,61:114-121. DOI: 10.1016/j.jlp.2019.06.011
[7] 刘树林,钟久明,樊文斌,等. 电容电路短路火花放电特性及其建模研究[J]. 煤炭学报,2012,37(12):2123-2128. LIU Shulin,ZHONG Jiuming,FAN Wenbin,et al. Short circuit discharge characteristics of the capacitive circuit and its mathematical model[J]. Journal of China Coal Society,2012,37(12):2123-2128.
[8] 刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州: 中国矿业大学, 2008. LIU Jianhua. A study on discharge theory and non-explosion evaluating method of the intrinsically safe circuits for explosive atmospheres[D]. Xuzhou: China University of Mining and Technology, 2008.
[9] 于月森,张望,孟庆海,等. 截止型保护方式下容性电路短路火花放电模型及分析[J]. 煤炭学报,2013,38(3):517-521. YU Yuesen,ZHANG Wang,MENG Qinghai,et al. Modeling and analysis on spark discharge of capacitive circuit with cut-off type protection[J]. Journal of China Coal Society,2013,38(3):517-521.
[10] 赵永秀,刘树林,马一博. 爆炸性试验电感电路分断放电特性分析与建模[J]. 煤炭学报,2015,40(7):1698-1704. ZHAO Yongxiu,LIU Shulin,MA Yibo. Analysis and modeling of inductor-disconnected-discharged characteristics based on explosive test[J]. Journal of China Coal Society,2015,40(7):1698-1704.
[11] 朱林,刘树林,刘柏清,等. 本质安全低压直流电路放电理论及数值研究综述[J]. 工矿自动化,2022,48(8):16-25. DOI: 10.13272/j.issn.1671-251x.2022050054 ZHU Lin,LIU Shulin,LIU Boqing,et al. Review of discharge theory and numerical research on intrinsically safe low voltage DC circuits[J]. Journal of Mine Automation,2022,48(8):16-25. DOI: 10.13272/j.issn.1671-251x.2022050054
[12] UBER C,RUNGE T,BRUNZENDORF J,et al. Electrical discharges caused by opening contacts in an ignitable atmosphere-Part II:Spectroscopic investigation and estimation of temperatures[J]. Journal of Loss Prevention in the Process Industries,2019,61:213-219. DOI: 10.1016/j.jlp.2019.05.010
[13] GB/T 3836.4—2010 爆炸性环境 第4部分: 由本质安全型“i”保护的设备[S]. GB/T 3836.4-2010 Explosive atmospheres-Part 4: Equipment protection by intrinsic safety "i" [S].
[14] 于月森,戚文艳,胡义涛,等. 复合电路的放电特性研究[J]. 煤矿安全,2013,44(9):54-57. YU Yuesen,QI Wenyan,HU Yitao,et al. Study on discharge characteristics of compound circuits[J]. Safety in Coal Mines,2013,44(9):54-57.
[15] LYU Yingchao,HUANG Junchao,HUANG Zhiyao,et al. Study on the application of simulated inductor technique to the design of C4D sensor[J]. Sensors and Actuators,A:Physical,2017,264:195-204. DOI: 10.1016/j.sna.2017.06.037
[16] 康骞,许春雨,田慕琴,等. 电势电容电路短路火花放电影响因素分析[J]. 工矿自动化,2020,46(8):38-43,63. KANG Qian,XU Chunyu,TIAN Muqin,et al. Analysis of influencing factors of short-circuit spark discharge in electric potential capacitance circuit[J]. Industry and Mine Automation,2020,46(8):38-43,63.
[17] 赵永秀,王骑,王瑶,等. 爆炸性环境电感分断放电引燃能力及本安性能评价方法[J]. 煤炭学报,2020,45(增刊2):867-874. ZHAO Yongxiu,WANG Qi,WANG Yao,et al. Criterion of intrinsically safe and ignition capability of inductor - disconnected - discharge in explosive environments[J]. Journal of China Coal Society,2020,45(S2):867-874.
[18] 刘树林,郝雨蒙,李艳,等. 基于最大功率的本安Buck变换器设计方法[J]. 电工技术学报,2021,36(3):542-551. LIU Shulin,HAO Yumeng,LI Yan,et al. Design methods of intrinsically safe buck converter based on the maximum output power[J]. Transactions of China Electrotechnical Society,2021,36(3):542-551.
[19] 刘树林,马一博,文晓明,等. 输出本安Buck-Boost变换器的最危险输出短路放电工况研究[J]. 电工技术学报,2015,30(14):253-260. LIU Shulin,MA Yibo,WEN Xiaoming,et al. Research on the most dangerous output short-circuit discharge conditions of output intrinsic safety buck-boost converters[J]. Transactions of China Electrotechnical Society,2015,30(14):253-260.
[20] 孟庆海,牟龙华,王崇林,等. 本质安全电路的功率判别式[J]. 中国矿业大学学报,2004,33(3):58-60. MENG Qinghai,MU Longhua,WANG Chonglin,et al. Electric power criterion of intrinsic safe circuits[J]. Journal of China University of Mining & Technology,2004,33(3):58-60.
[21] 刘树林. 本质安全开关变换器基础理论及关键技术研究[D]. 西安: 西安科技大学, 2007. LIU Shulin. Basic theory & key technologies of intrinsically safe switching converters[D]. Xi'an: Xi'an University of Science and Technology, 2007.