留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

济宁二号煤矿通风系统优化改造

掌奕然 陶维国 郭传清 陈修杰 苗德俊

掌奕然,陶维国,郭传清,等. 济宁二号煤矿通风系统优化改造[J]. 工矿自动化,2023,49(8):134-141, 155.  doi: 10.13272/j.issn.1671-251x.2023020061
引用本文: 掌奕然,陶维国,郭传清,等. 济宁二号煤矿通风系统优化改造[J]. 工矿自动化,2023,49(8):134-141, 155.  doi: 10.13272/j.issn.1671-251x.2023020061
ZHANG Yiran, TAO Weiguo, GUO Chuanqing, et al. Optimization and transformation of ventilation system in Jining No.2 Coal Mine[J]. Journal of Mine Automation,2023,49(8):134-141, 155.  doi: 10.13272/j.issn.1671-251x.2023020061
Citation: ZHANG Yiran, TAO Weiguo, GUO Chuanqing, et al. Optimization and transformation of ventilation system in Jining No.2 Coal Mine[J]. Journal of Mine Automation,2023,49(8):134-141, 155.  doi: 10.13272/j.issn.1671-251x.2023020061

济宁二号煤矿通风系统优化改造

doi: 10.13272/j.issn.1671-251x.2023020061
基金项目: 山东省自然科学基金资助项目(ZR2020QE137)。
详细信息
    作者简介:

    掌奕然(1999—),男,江苏连云港人,硕士研究生,研究方向为矿井通风与降温,E-mail:1097561886@qq.com

  • 中图分类号: TD724

Optimization and transformation of ventilation system in Jining No.2 Coal Mine

  • 摘要: 针对目前对矿井工作面通风系统风量调节及矿井降阻等方面研究较少的问题,以济宁二号煤矿10303工作面和3302工作面为工程背景,对这2处原有的通风系统在风量调节及矿井降阻等方面进行优化改造。将工作面通风系统图导入Ventism软件中,生成实体巷道并迭代计算,构建矿井通风网络解算模型。将现场实测的主要参数输入到该模型中进行风流计算,得到的巷道内流速、温度及风量等相关数据与现场测定数据误差在标准范围内。由矿井通风阻力测定结果可知,原有通风系统存在如下问题:南翼石门调节风墙设置不合理;3302工作面实际供风量小于理想需风量;南翼−740水平轨道大巷通风路线长,受辅助运输巷并联进风的影响,南翼回风大巷阻力大。针对上述问题,提出3条改造措施:① 在南翼回风石门和北翼带式输送机巷交汇处设置1个封闭风门,并将南翼带式输送机大巷与回风石门原有的风窗面积调整为2.9 m2;② 在三采区轨道下山延伸与3302轨道联络巷处设置1个面积为0.1 m2的调节风窗;③ 在十一采区管子道和南翼−740水平轨道大巷接口处,将0.9 m2的调节风窗改为2.4 m2,减少南翼−740水平轨道大巷风量,增加辅助运输巷的并联风量。改造后的通风系统模拟结果表明:南翼−740水平轨道大巷阻力降低了32.7%,3302工作面风量提升了19.8 %,矿井通风路线总阻力降低了6.4 %。改造后的通风系统现场实测结果表明:实测风量和数值模拟结果平均相对误差为1.28 %,实测阻力和数值模拟结果平均相对误差为2.52 %,模拟结果与现场实测结果基本吻合。通风系统改造后,进风井风量和阻力变化不大;回风井监测点处的风量减少,阻力降低;3302轨道联络巷及工作面监测点处实测风量分别增加了25.3%和21.4 %,阻力增大了57.4%和41.1%;南翼−740水平轨道大巷监测点处实测风量降低了20.3 %,实测阻力减小了36.6 %。工作面风量和矿井总阻力达到预期优化效果。

     

  • 图  1  监测点位置

    Figure  1.  Monitoring points location

    图  2  济宁二号煤矿通风系统三维模型

    Figure  2.  Three-dimensional model of ventilation system in Jining No.2 Coal Mine

    图  3  实际风量和模拟风量对比

    Figure  3.  Comparison between actual air volume and simulated air volume

    图  4  改造措施1

    Figure  4.  Modified measure 1

    图  5  改造措施2

    Figure  5.  Modified measure 2

    图  6  改造措施3

    Figure  6.  Modified measure 3

    图  7  风速阻力测点

    Figure  7.  Wind speed resistance measurement point

    表  1  济宁二号煤矿通风路线阻力测定数据

    Table  1.   Measurement data of ventilation route resistance in Jining No.2 Coal Mine

    测点序号巷道名称巷道长度/m断面积/m2风阻/(N·s2·m−8测段阻力/Pa风量/(m3·s−1风速/(m·s−1
    1主井593.015.90.002 86.6348.53.00
    2副井593.017.70.002 8163.80241.012.3
    3南翼轨道大巷1 105.618.90.009 7175.00134.77.07
    4南翼辅助进风大巷980.010.40.019 8122.4478.67.56
    5南翼−740水平轨道大巷2 286.918.00.002 011.5676.04.22
    6十采区轨道巷3 340.017.60.184 5494.5751.82.90
    710303辅助运输联络巷151.516.90.009 07.5228.91.20
    810303工作面251.022.50.110 089.3428.81.30
    9十采区带式输送机巷2 193.013.90.184 55.805.60.40
    10西翼通风巷1 406.218.50.015 030.9045.42.45
    11西翼回风石门联络巷350.518.80.001 71.7331.93.10
    12三采区轨道下山1 106.013.00.084 4110.0036.12.78
    133302轨道联络巷92.416.90.016 212.2927.61.40
    143302工作面205.022.50.090 055.2624.81.20
    15南翼带式输送机大巷976.919.30.037 881.2046.42.36
    16北翼带式输送机大巷3 268.618.60.015 113.7730.22.21
    174300运输联络巷288.717.60.043 738.8429.80.23
    18北翼回风大巷862.418.00.132 2103.8628.01.56
    19南翼回风大巷853.018.60.015 0227.45123.56.40
    20回风井562.022.50.005 8471.50283.013.1
    下载: 导出CSV

    表  2  矿井通风系统优化前后监测点风量、阻力

    Table  2.   Air volume and resistance of measuring points before and after mine ventilation systen optimization

    巷道
    名称
    风量/(m3·s−1 阻力/Pa
    优化前优化后优化前优化后
    主井48.548.1 6.596.52
    副井241.0241.2163.63164.06
    南翼轨道大巷126.3126.9154.73155.40
    南翼辅助进风大巷79.279.5124.20125.27
    南翼−740水平轨道大巷75.662.011.437.69
    十采区轨道巷52.652.2510.47502.62
    10303辅助运输联络巷28.728.57.417.31
    10303工作面28.728.490.6188.72
    十采区带式输送机巷5.85.66.215.78
    西翼通风巷45.645.031.1930.38
    西翼回风石门联络巷31.929.81.731.51
    三采区轨道下山36.137.6109.99119.28
    3302轨道联络巷27.635.212.3420.02
    3302工作面24.829.755.2679.39
    南翼带式输送机大巷52.046.9102.2183.04
    北翼带式输送机大巷311.914.510.05
    4300运输联络巷30.10.939.590.04
    北翼回风大巷281.2103.640.19
    南翼回风大巷120.6123.0218.17226.78
    回风井285.3282.0472.10457.26
    下载: 导出CSV

    表  3  通风系统优化前后实测数据与模拟结果

    Table  3.   Measured data and simulation results before and after ventilation system optimization

    监测点 优化前风量/
    (m3·s−1
    优化后风量/
    (m3·s−1
    优化前
    阻力/Pa
    优化后
    阻力/Pa
    实测值模拟值实测值模拟值实测值模拟值实测值模拟值
    进风井289.5289.5288.1289.3170.43170.22168.20170.50
    回风井283.0285.3280.5282.0471.50472.10452.40457.00
    3302轨道联络巷27.627.634.635.212.2912.3419.3520.00
    3302工作面24.824.830.129.755.2655.2678.0079.39
    南翼−740水平轨道大巷76.075.6060.562.011.5611.437.327.68
    下载: 导出CSV

    表  4  优化后通风网络解算结果

    Table  4.   Calculation results of ventilation network after optimization

    分支序号巷道名称始节点末节点风阻/(N·s2·m−8测段阻力/Pa风量/(m3·s−1
    1主井120.00286.4848.1
    2副井130.0028161.28240.0
    3南翼轨道大巷240.0097150.35124.5
    4南翼辅助进风大巷340.0198126.4079.9
    5南翼1号变电所、水泵4540.0832212.042.3
    6三采区轨道下山560.0844118.6937.5
    73302轨道联络巷670.016219.3534.6
    83302轨道机头7862.8125492.452.8
    93302工作面790.090078.0030.1
    10三采区带式输送机下山9100.1741196.5533.6
    11南翼带式输送机大巷10110.0378103.7952.4
    12北翼带式输送机大巷11130.01510.072.1
    134300运输联络巷14150.04370.061.2
    14北翼回风大巷14150.13220.161.1
    15北翼回风石门联络巷15120.00080.011.2
    16南翼进风下山16170.0428559.16114.3
    17南翼轨道下山16190.0505613.27110.2
    18十一采区管子道17180.002310.7168.23
    19−740辅助运输巷18200.003512.0258.6
    209310轨道回风巷20210.026422.9729.5
    219310切眼21220.102388.4229.4
    229310运输机巷22230.043737.2629.2
    23十采区轨道巷23240.1845510.4752.6
    24十采区进风巷25260.009725.4351.2
    2510303辅助运输联络巷26270.00907.2628.4
    2610303工作面27280.110088.1028.3
    27西翼通风巷28290.015030.7845.3
    28西翼回风巷29300.012125.7246.1
    29西翼回风石门联络巷30120.00171.5129.8
    30十采区带式输送机巷30310.18455.995.7
    31南翼−740水平带式输送机大巷31320.67781015.1338.7
    32南翼带式输送机下山32330.1541952.0278.6
    33南翼带式输送机大巷33120.011616.4037.6
    34南翼−740水平轨道大巷19340.00207.3260.5
    35南翼−740水平回风大巷34350.018971.2561.4
    36南翼回风下山35360.0960620.5680.4
    37南翼回风大巷35120.0150211.80121.6
    38回风井1210.0058456.35280.5
    下载: 导出CSV
  • [1] 李兴旺. 优化矿井通风与安全生产的关系研究[J]. 矿业装备,2021(6):164-165.

    LI Xingwang. Study on the relationship between optimizing mine ventilation and safety production[J]. Mining Equipment,2021(6):164-165.
    [2] 袁明昌,支学艺,吴亚军. 武山铜矿通风系统优化研究[J]. 矿业研究与开发,2019,39(6):118-121.

    YUAN Mingchang,ZHI Xueyi,WU Yajun. Study on optimization of ventilation system in Wushan Copper Mine[J]. Mining Research and Development,2019,39(6):118-121.
    [3] 闫岩. 基于Ventsim模型矿井通风优化研究[J]. 煤炭与化工,2021,44(6):115-117.

    YAN Yan. Study on mine ventilation optimization based on Ventsim model[J]. Coal and Chemical Industry,2021,44(6):115-117.
    [4] 郝海清,蒋曙光,王凯,等. 基于Ventsim的矿井运输巷火灾风烟流应急调控技术[J]. 煤矿安全,2022,53(9):38-46.

    HAO Haiqing,JIANG Shuguang,WANG Kai,et al. Emergency control technology of air and smoke flow in mine belt roadway fire based on Ventsim software[J]. Safety in Coal Mines,2022,53(9):38-46.
    [5] 石银斌. 五虎山矿井通风量数值模拟优化研究[J]. 工矿自动化,2021,47(增刊1):75-77.

    SHI Yinbin. Research on numerical simulation and optimization of ventilation rate in Wuhushan Coal Mine[J]. Industry and Mine Automation,2021,47(S1):75-77.
    [6] 何敏,武福生,成燕玲. 基于三维模型的通风系统优化调控模拟分析[J]. 工矿自动化,2016,42(11):41-44.

    HE Min,WU Fusheng,CHENG Yanling. Simulation analysis of optimal regulation and control of ventilation system based on 3D model[J]. Industry and Mine Automation,2016,42(11):41-44.
    [7] 卢辉,袁树杰,马瑞峰,等. 基于Ventsim的南山煤矿孤岛工作面均压通风方案研究[J]. 中国安全生产科学技术,2020,16(8):125-130.

    LU Hui,YUAN Shujie,MA Ruifeng,et al. Study on scheme of pressure equalizing ventilation in isolated island working face of Nanshan coal mine based on Ventsim[J]. Journal of Safety Science and Technology,2020,16(8):125-130.
    [8] 辛嵩,侯传彬,金晓娜,等. 基于Ventsim模型的矿井单翼通风系统优化研究[J]. 矿业安全与环保,2019,46(6):84-88.

    XIN Song,HOU Chuanbin,JIN Xiaona,et al. Optimization of mine single-wing ventilation system based on ventsim[J]. Mining Safety & Environmental Protection,2019,46(6):84-88.
    [9] 陈浩,陈宜华,胡秀林,等. 基于Ventsim的深井金属矿山通风系统优化[J]. 工业安全与环保,2018,44(4):30-33.

    CHEN Hao,CHEN Yihua,HU Xiulin,et al. Ventilation system optimization of deep well metal mine based on ventsim[J]. Industrial Safety and Environmental Protection,2018,44(4):30-33.
    [10] 耿守锋. 矿井通风系统三维模型构建与优化设计[J]. 煤矿现代化,2022,31(1):77-79.

    GENG Shoufeng. Three-dimensional model construction and optimal design of mine ventilation system[J]. Coal Mine Modernization,2022,31(1):77-79.
    [11] 肖梦辉,于涛,常宝孟,等. 基于Ventsim的复杂矿井火灾数值模拟研究[J]. 矿业研究与开发,2021,41(12):129-134.

    XIAO Menghui,YU Tao,CHANG Baomeng,et al. Numerical simulation study on complex mine fire based on ventsim[J]. Mining Research and Development,2021,41(12):129-134.
    [12] 任浩. 新发煤业通风系统优化研究[D]. 包头: 内蒙古科技大学, 2020.

    REN Hao. Study on optimization of ventilation system in Xinfa Coal Mine[D]. Baotou: Inner Mongolia University of Science & Technology, 2020
    [13] 曹怀轩. 基于Ventsim的复杂通风系统优化及监测预警研究[D]. 青岛: 山东科技大学, 2020.

    CAO Huaixuan. Research on optimization and monitoring early warning of complex ventilation system based on Ventsim[D]. Qingdao: Shandong University of Science and Technology, 2020.
    [14] 朱旭东. 基于Ventsim的漳村矿通风系统优化研究[D]. 焦作: 河南理工大学, 2020.

    ZHU Xudong. Study on optimization of ventilation system of Zhangcun Mine based on Ventsim[D]. Jiaozuo: Henan Polytechnic University, 2020.
    [15] 陈艳丽. 基于Ventsim的矿井通风系统稳定性分析[D]. 长沙: 中南大学, 2014.

    CHEN Yanli. The stability analysis of mine ventilation system on Ventsim software[D]. Changsha: Central South University, 2014.
    [16] 陶维国,姜希印,王连涛,等. 济宁二号煤矿通风系统优化研究与实施[J]. 煤矿现代化,2016(4):130-133.

    TAO Weiguo,JIANG Xiyin,WANG Liantao,et al. The optimize researches and implement on ventilation system of Jining NO. 2 Coal Mine[J]. Coal Mine Modernization,2016(4):130-133.
    [17] 王绪友,王连涛,陶维国,等. 济宁二号煤矿沿空留巷工作面通风系统优化研究[J]. 矿业安全与环保,2016,43(1):77-80.

    WANG Xuyou,WANG Liantao,TAO Weiguo,et al. Study on ventilation system optimization of working face with gob-side entry retaining in Jining No. 2 Coal Mine[J]. Mining Safety & Environmental Protection,2016,43(1):77-80.
    [18] 郭鹏阁. 基于VSE软件的矿井通风系统优化研究[J]. 山东煤炭科技,2021,39(3):103-106.

    GUO Pengge. Research on optimization of mine ventilation system based on VSE software[J]. Shandong Coal Science and Technology,2021,39(3):103-106.
    [19] 谢中朋. 复杂矿井通风系统稳定性研究[D]. 北京: 中国矿业大学(北京), 2015.

    XIE Zhongpeng. Research on stability of complicated mine ventilation system[D]. Beijing: China University of Mining and Technology-Beijing, 2015.
    [20] 孙利阳. 鲁奎山铁矿通风系统优化方案研究[D]. 昆明: 昆明理工大学, 2021.

    SUN Liyang. Study on the optimization scheme of ventilation system in Rukui Mountain Iron Mine[D]. Kunming: Kunming University of Science and Technology, 2021.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  33
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-16
  • 修回日期:  2023-06-15
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回