煤巷支护参数预测研究

陈攀, 马鑫民, 向俊杰, 陈莉影, 梁厅皓

陈攀,马鑫民,向俊杰,等. 煤巷支护参数预测研究[J]. 工矿自动化,2023,49(10):133-141. DOI: 10.13272/j.issn.1671-251x.2022120047
引用本文: 陈攀,马鑫民,向俊杰,等. 煤巷支护参数预测研究[J]. 工矿自动化,2023,49(10):133-141. DOI: 10.13272/j.issn.1671-251x.2022120047
CHEN Pan, MA Xinmin, XIANG Junjie, et al. Research on prediction of support parameters for coal roadways[J]. Journal of Mine Automation,2023,49(10):133-141. DOI: 10.13272/j.issn.1671-251x.2022120047
Citation: CHEN Pan, MA Xinmin, XIANG Junjie, et al. Research on prediction of support parameters for coal roadways[J]. Journal of Mine Automation,2023,49(10):133-141. DOI: 10.13272/j.issn.1671-251x.2022120047

煤巷支护参数预测研究

基金项目: 国家自然科学基金资助项目(52074301)。
详细信息
    作者简介:

    陈攀(1998—),男,云南曲靖人,硕士,主要从事巷道支护和水利勘察工作,E-mail:18811432245@163.com

    通讯作者:

    马鑫民(1979—),男,山东荷泽人,副教授,主要研究方向为矿山工程爆破和巷道支护智能化技术,E-mail:mxm@cumtb.edu.cn

  • 中图分类号: TD353

Research on prediction of support parameters for coal roadways

  • 摘要: 目前支持向量机(SVM)和随机森林(RF)等算法在煤矿巷道支护领域应用较少。研究了不同的机器学习模型进行支护参数设计的适用性,以建立一个更高性能的模型来实现锚杆支护的合理、科学设计。首先建立煤巷支护智能预测数据库:采用现场调研、问卷调查和文献检索等方式收集煤矿巷道样本;采用缺失值填补、箱形图修改离群点和局部异常因子剔除等方式对数据进行处理,建立煤巷支护数据库。提出一种基于合成少数类过采样(SMOTE)−遗传算法(GA)−SVM的煤巷支护参数预测模型:将数据库中的数据分成训练集与测试集,采用SMOTE技术平衡训练样本,提高模型对少数类样本的拟合能力;训练过程采用GA对SVM的超参数进行全局寻优,进一步提高模型整体性能。测试结果表明,SMOTE−GA−SVM模型的分类精度达到83.8%,比传统的SVM模型提高了21.8%。将SVM、人工神经网络(ANN)、RF、AdaBoost(ADA)和朴素贝叶斯分类器(NBC)等机器学习方法引入到煤巷锚杆支护参数预测中,建立对应的支护参数预测模型,比较结果表明:从最优到最差的预测模型排序分别为SMOTE−GA−SVM、RF、GA−ANN、SVM、NBC和ADA,6种模型的平均分类精度达69.9%,验证了机器学习方法在煤巷锚杆支护参数预测方面的可行性。在山西霍宝干河煤矿有限公司对SMOTE−GA−SVM模型进行了应用,模型预测准确率达87.5%,具有较强的适用性和可靠性。
    Abstract: Currently, algorithms such as support vector machine (SVM) and random forest (RF) are less applied in the field of coal mine roadway support. The paper studies the applicability of different machine learning models for support parameter design.Thus a higher performance model would be established to achieve reasonable and scientific design of anchor bolt support. Firstly, it is suggested to establish an intelligent prediction database for coal mine roadway support. Through on-site research, questionnaire survey, and literature search, the coal mine roadway samples are collected. The data is processed using methods such as filling in missing values, modifying outliers in box charts, and removing local abnormal factors to establish a coal roadway support database. The paper proposes a coal roadway support parameter prediction model based on synthetic minority oversampling technique (SMOTE) - genetic algorithm (GA) - SVM. The data in the database is divided into training and testing sets. The SMOTE technology is used to balance training samples, and improve the model's fitting capability for minority class samples. The training process uses GA to globally optimize the hyperparameters of SVM, further improving the overall performance of the model. The test results show that the classificaton precision of the SMOTE-GA-SVM model reaches 83.8%, which is 21.8% higher than the traditional SVM model. The machine learning methods such as SVM, artificial neural network (ANN), RF, AdaBoost (ADA), and naive Bayesian classifier (NBC) are introduced into the prediction of coal roadway anchor support parameters. The corresponding support parameter prediction models are established. The comparison results showed that the best to worst prediction models are ranked as SMOTE-GA-SVM, RF, GA-ANN, SVM, NBC, and ADA, with an average classificaton precision of 69.9%. The result verifies the feasibility of machine learning methods in predicting the parameters of coal roadway bolt support. The SMOTE-GA-SVM model is applied in Shanxi Huobaoganhe Coal Mine Co., Ltd., with a precision of 87.5% and strong applicability and reliability.
  • 图  1   GA对SVM超参数寻优流程

    Figure  1.   GA optimization process for super parameters of SVM

    图  2   原始数据的箱形图

    Figure  2.   Box diagram of the original data

    图  3   训练集输入参数分布统计

    Figure  3.   Distribution statistics of input parameters of training set

    图  4   SMOTE平衡样本流程

    Figure  4.   Sample balancing flow by SMOTE

    图  5   煤巷支护数据库的整体构建流程

    Figure  5.   The overall building process of the coal roadway support database

    图  6   SMOTE−GA−SVM支护参数预测模型建立流程

    Figure  6.   SMOTE-GA-SVM supporting parameter prediction model establishment process

    图  7   输入变量在支护参数预测模型上的重要性

    Figure  7.   Importance of input variables in support parameter prediction model

    图  8   顶板锚杆间距GA−ANN预测模型的网络拓扑结构

    Figure  8.   Network topology of GA-ANN prediction model of roof bolt spacing

    表  1   基于LOF的异常样本检测结果

    Table  1   Test results of abnormal samples based on local outlier factor(LOF)

    k=4k=5k=6k=7k=8k=9k=10
    105105105105331414
    843333331053325
    129848484148449
    33129154124842533
    1241241291541544984
    15415412414124105105
    36759012925154154
    9036172549124124
    7544441091097575
    70141097512910959
    下载: 导出CSV

    表  2   顶板锚杆支护参数统计

    Table  2   Statistics of roof anchor bolt support parameters

    参数名称参数值频数参数名称参数值频数
    直径18 mm11间距700 mm5
    20 mm46800 mm39
    22 mm60900 mm36
    长度2 000 mm141 000 mm16
    2 200 mm171 100 mm9
    2 400 mm571 200 mm12
    2 500 mm20排距700 mm10
    2 600 mm9800 mm33
    数量4 根13900 mm16
    5 根281 000 mm38
    6 根531 100 mm7
    7 根231 200 mm13
    下载: 导出CSV

    表  3   顶板锚索支护参数统计

    Table  3   Statistics of roof anchor cable support parameters

    参数名称参数值频数参数名称参数值频数
    直径15.24 mm14长度5300 mm20
    17.89 mm366300 mm39
    18.7 mm187300 mm22
    21.6 mm178300 mm32
    22 mm329300 mm4
    数量1 根4布置方式124
    2 根68271
    3 根39322
    4 根6
    下载: 导出CSV

    表  4   帮部支护参数统计

    Table  4   Side support parameter statistics

    参数名称参数值频数参数名称参数值频数
    直径16 mm7间距700 mm10
    18 mm20800 mm41
    20 mm41900 mm21
    22 mm491 000 mm27
    长度1 800 mm161 100 mm4
    2 000 mm251 200 mm14
    2 200 mm12排距700 mm10
    2 400 mm43800 mm33
    2 500 mm21900 mm15
    数量2 根71 000 mm39
    3 根291 100 mm7
    4 根521 200 mm13
    5 根29
    下载: 导出CSV

    表  5   GA全局寻优结果

    Table  5   Global optimization results of GA

    支护特征cbestgbest 支护特征cbestgbest
    顶板锚杆直径85.262.32 帮部锚杆间距33.655.30
    顶板锚杆长度6.750.63帮部锚杆排距54.232.65
    顶板锚杆间距70.767.44帮部锚杆数量30.234.64
    顶板锚杆排距81.042.07锚索直径74.627.55
    顶板锚杆数量32.973.71锚索长度61.501.51
    帮部锚杆直径73.868.96锚索数量87.002.65
    帮部锚杆长度10.535.07锚索布置70.725.30
    下载: 导出CSV

    表  6   机器学习模型在测试集上的分类精度

    Table  6   Classification precision of machine learning model on test set %

    模型顶板锚杆精度帮部锚杆精度顶板锚索精度平均精度
    直径长度间距排距数量直径长度间距排距数量直径长度数量布置
    SVM66.083.666.079.274.854.070.470.464.857.254.079.274.869.268.8
    SMOTE−GA−SVM86.089.882.484.382.175.379.288.477.177.283.393.590.684.083.8
    RF79.274.852.883.666.070.461.661.674.852.857.292.488.079.271.0
    ADA72.664.553.857.857.848.451.137.659.261.848.478.780.775.360.5
    GA−ANN93.463.464.455.066.062.766.057.271.555.074.889.879.882.570.1
    NBC66.066.044.044.079.270.457.257.257.274.848.481.888.074.864.9
    下载: 导出CSV

    表  7   霍州矿区干河煤矿的特征参数

    Table  7   Characteristic parameters of Ganhe Coal Mine in Huozhou Mining area

    序号巷道名称煤层厚
    度/m
    煤层强
    度/MPa
    基本顶厚
    度/m
    基本顶强
    度/MPa
    直接顶厚
    度/m
    直接顶强
    度/MPa
    直接底厚
    度/m
    直接底强
    度/MPa
    埋深/m巷道高度/m巷道宽度/m
    12−1161巷4.209.381.7065.066.4051.791.1051.794503.65.0
    22−1261巷3.7515.004.8086.092.4565.062.9019.164203.75.0
    3三采区辅助运输巷0.789.383.1265.064.9686.094.6045.404203.54.8
    42−1021巷4.2014.543.1057.323.8925.000.8037.455003.85.0
    下载: 导出CSV

    表  8   SMOTE−GA−SVM模型应用结果

    Table  8   Application result of SMOTE-GA-SVM model

    序号巷道名称顶板锚杆帮部锚杆顶板锚索
    直径/
    mm
    长度/
    mm
    间距/
    mm
    排距/
    mm
    数量/
    直径/
    mm
    长度/
    mm
    间距/
    mm
    排距/
    mm
    数量/
    直径/
    mm
    长度/
    mm
    布置
    方式
    数量/
    1 2−1161巷 真实值 22 2500 900 900 6 22 2500 900 900 4 21.60 8300 2 3
    测试值 22 2400 900 900 6 22 2400 900 900 4 21.60 8300 2 3
    2 2−1261巷 真实值 22 2500 800 800 7 22 2500 800 800 5 21.60 8300 3 3
    测试值 22 2500 800 800 7 22 2500 800 800 5 21.60 8300 3 3
    3 三采区辅助运输巷 真实值 20 2000 800 800 7 20 2000 800 800 2 15.24 7300 2 2
    测试值 20 2000 800 1000 7 20 2000 800 1000 2 17.89 7300 2 2
    4 2−1021巷 真实值 22 2400 900 1000 6 22 2400 1000 1000 4 21.60 6300 2 2
    测试值 22 2400 900 1000 6 20 2400 1000 1000 4 21.60 7300 2 2
    下载: 导出CSV
  • [1] 康红普. 我国煤矿巷道锚杆支护技术发展60年及展望[J]. 中国矿业大学学报,2016,45(6):1071-1081.

    KANG Hongpu. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China[J]. Journal of China University of Mining & Technology,2016,45(6):1071-1081.

    [2] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1-30.

    KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1-30.

    [3] 单仁亮,彭杨皓,孔祥松,等. 国内外煤巷支护技术研究进展[J]. 岩石力学与工程学报,2019,38(12):2377-2403.

    SHAN Renliang,PENG Yanghao,KONG Xiangsong,et al. Research progress of coal roadway support technology at home and abroad[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(12):2377-2403.

    [4] 顾清华,江松,李学现,等. 人工智能背景下采矿系统工程发展现状与展望[J]. 金属矿山,2022(5):10-25.

    GU Qinghua,JIANG Song,LI Xuexian,et al. Development status and prospect of mining system engineering under the background of artificial intelligence[J]. Metal Mine,2022(5):10-25.

    [5] 谢广祥,曹伍富,王德润,等. 基于人工神经网络的煤巷锚杆支护设计研究[J]. 煤炭学报,1999(6):599-604.

    XIE Guangxiang,CAO Wufu,WANG Derun,et al. The study on bolting support design in coal roadway based on artificial neural networks[J]. Journal of China Coal Society,1999(6):599-604.

    [6] 王茂源. 煤巷锚杆支护设计混合智能系统研究[D]. 北京:中国矿业大学(北京),2016.

    WANG Maoyuan. Hybrid intelligent system on coal roadway bolting design[D]. Beijing:China University of Mining and Technology-Beijing,2016.

    [7] 王哲哲,许梦国,程爱平,等. 模糊神经网络在巷道支护方案选择中的应用[J]. 化工矿物与加工,2019,48(1):16-19,23.

    WANG Zhezhe,XU Mengguo,CHENG Aiping,et al. Application of fuzzy neural network in selection of roadway support scheme[J]. Industrial Minerals & Processing,2019,48(1):16-19,23.

    [8]

    XU Qingyun,LI Yongming,LU Jie,et al. The use of surrounding rock loosening circle theory combined with elastic-plastic mechanics calculation method and depth learning in roadway support[J]. PLoS ONE,2020,15(7). DOI: 10.1371/journal.pone.0234071.

    [9]

    REN Heng,ZHU Yongjian,WANG Ping,et al. Classification and application of roof stability of bolt supporting coal roadway based on BP neural network[J]. Advances in Civil Engineering,2020. DOI: 10.1155/2020/8838640.

    [10]

    ZHANG Xiliang,NGUYEN H,BUI X,et al. Evaluating and predicting the stability of roadways in tunnelling and underground space using artificial neural network-based particle swarm optimization[J]. Tunnelling and Underground Space Technology,2020,103. DOI: 10.1016/j.tust.2020.103517.

    [11]

    PU Yuanyuan,APEL D,HALL R. Using machine learning approach for microseismic events recognition in underground excavations:comparison of ten frequently-used models[J]. Engineering Geology,2020. DOI: 10.1016/j.enggeo.2020.105519.

    [12] 马鑫民,范皓宇,林天舒,等. 基于GA−SVM的煤矿岩巷爆破效果智能预测[J]. 煤炭工程,2019,51(5):148-153.

    MA Xinmin,FAN Haoyu,LIN Tianshu,et al. Intelligent prediction of blasting effect of coal mine roadway based on GA-SVM[J]. Coal Engineering,2019,51(5):148-1533.

    [13]

    MAHDEVARI S,KHODABAKHSHI M B. A hierarchical local-model tree for predicting roof displacement in longwall tailgates[J]. Neural Computing and Applications,2021,33(21):14909-14928. DOI: 10.1007/s00521-021-06127-y

    [14] 赵汝星. 基于随机森林的回采巷道围岩稳定性分类[J]. 煤矿安全,2014,45(11):200-202,206.

    ZHAO Ruxing. Classification of roadway surrounding rock stability based on random forest[J]. Safety in Coal Mines,2014,45(11):200-202,206.

    [15] 汪海燕,黎建辉,杨风雷. 支持向量机理论及算法研究综述[J]. 计算机应用研究,2014,31(5):1281-1286.

    WANG Haiyan,LI Jianhui,YANG Fenglei. Overview of support vector machine analysis and algorithm[J]. Application Research of Computers,2014,31(5):1281-1286.

    [16]

    JU Xuchan,YAN Zhenghao,WANG Tianhe,et al. Overview of optimization algorithms for large-scale support vector machines[C]. IEEE International Conference on Data Mining Workshops,Ningbo,2021:909-916.

    [17]

    CHAHAR V,KATOCH S,CHAUHAN S S. A review on genetic algorithm:past,present,and future[J]. Multimedia Tools and Applications,2020,80(5):8091-8126.

    [18] 谭文侃,叶义成,胡南燕,等. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报,2021,40(6):1186-1194.

    TAN Wenkan,YE Yicheng,HU Nanyan,et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1186-1194.

    [19]

    FENG Shuo,KEUNG J,YU Xiao,et al. Investigation on the stability of SMOTE-based oversampling techniques in software defect prediction[J]. Information and Software Technology,2021,139(6). DOI: 10.1016/j.infsof.2021.106662.

    [20]

    CHAO Ying,YIN Kunlong,ZHOU Chao,et al. Establishment of landslide groundwater level prediction model based on GA-SVM and influencing factor analysis[J]. Sensors,2020,20(3):845. DOI: 10.3390/s20030845

    [21] 吕红燕,冯倩. 随机森林算法研究综述[J]. 河北省科学院学报,2019,36(3):37-41. DOI: 10.16191/j.cnki.hbkx.2019.03.005

    LYU Hongyan,FENG Qian. A review of random forests algorithm[J]. Journal of the Hebei Academy of Sciences,2019,36(3):37-41. DOI: 10.16191/j.cnki.hbkx.2019.03.005

图(8)  /  表(8)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-09-19
  • 网络出版日期:  2023-10-22
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回